Assembled β-Co(OH)2 Nanoparticles on Reduced Graphene Oxide for Enhanced Magnetism

  • Feng Liu
  • Shuangli Ye
  • Huijin Guo
  • Min Zhai
  • Jun Qian
Original Paper


A simple and effective method has been developed to assemble the β-Co(OH)2 nanoparticles coordinated to the surface of the reduced graphene oxide sheets. The reduced graphene oxide-Co(OH)2 hybrid is characterized by transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy techniques, respectively. These morphological and structural analysis results demonstrate the successful attachment of hexagonal β-Co(OH)2 nanoparticles to the reduced graphene oxide sheets through the oxygen-containing functional groups. Compared to the paramagnetic property of hexagonal β-Co(OH)2 nanoparticles, a s-like superparamagnetic behavior can be observed at room temperature for the reduced graphene oxide-Co(OH)2 hybrid by the magnetometer PPMS-9T magnetic measurement, indicative of superparamagnetism. The interplay between the localized magnetic moment of the Co2+ ions in the hexagonal β-Co(OH)2 nanoparticles and the itinerant π carriers in reduced graphene oxide is suggested to be responsible for this superparamagnetic behavior. This enhanced magnetism indicates that the reduced graphene oxide-Co(OH)2 hybrid has a promising potential for spintronic device applications.


Graphene Nanocomposite Hybrid Superparamagnetism Spintronics 



This work is supported by National Natural Science Foundation of China (Grant Nos. 61006080 and 11174226) and Ph.D. Programs Foundation of Ministry of Education of China.


  1. 1.
    Datta, S., Das, B.: Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990) CrossRefADSGoogle Scholar
  2. 2.
    Puttisong, Y., Buyanova, I.A., Ptak, A.J., Tu, C.W., Geelhaar, L., Riechert, H., Chen, W.M.: Room-temperature electron spin amplifier based on Ga(In)NAs alloys. Adv. Mater. 25, 738–742 (2013) CrossRefGoogle Scholar
  3. 3.
    Sinova, J., Žutić, I.: New moves of the spintronics tango. Nat. Mater. 11, 368–371 (2012) CrossRefADSGoogle Scholar
  4. 4.
    Zhu, H.J., Ramsteiner, M., Kostial, H., Wasserrmeier, M., Schönherr, H.-P., Ploog, K.H.: Room temperature spin injection from Fe into GaAs. Phys. Rev. Lett. 87, 016601 (2001) CrossRefADSGoogle Scholar
  5. 5.
    Osipov, V.V., Bratkovsky, A.M.: A class of spin injection-precession ultrafast nanodevices. Appl. Phys. Lett. 84, 2118–2120 (2004) CrossRefADSGoogle Scholar
  6. 6.
    Lou, X., Adelmann, C., Crooker, S.A., Garlid, E.S., Zhang, J., Reddy, S.M., Flexner, S.D., Palmstrøm, C.J., Crowell, P.A.: Electrical Detection of spin transport in lateral ferromagnet-semiconductor devices. Nat. Phys. 3, 197–202 (2007) CrossRefGoogle Scholar
  7. 7.
    Samarth, N.: Ferromagnetic semiconductors: Battle of the bands. Nat. Mater. 11, 360–361 (2012) CrossRefADSGoogle Scholar
  8. 8.
    Dietl, T.: A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965–974 (2010) CrossRefADSGoogle Scholar
  9. 9.
    Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H.T., Van Wees, B.J.: Electronic spin transport and spin precession in single graphene layers at room temperature. Nature. 448, 571–574 (2007) CrossRefADSGoogle Scholar
  10. 10.
    Pensin, D., MacDonald, A.H.: Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater. 11, 409–416 (2012) CrossRefADSGoogle Scholar
  11. 11.
    Castro Neto, A.H.: Another spin on graphene. Science. 332, 315–316 (2011) CrossRefADSGoogle Scholar
  12. 12.
    Nair, R.R., Tsai, I-L., Sepioni, M., Lehtinen, O., Keinonen, J., Krasheninnikov, A.V., Castro Neto, A.H., Katsnelson, M.I., Geim, A.K., Grigorieva, I.V.: Dual origin of defect magnetism in graphene and its reversible switching by molecular doping. Nat. Commun. 4, 2010 (2013) ADSGoogle Scholar
  13. 13.
    Garnica, M., Stradi, D., Barja, S., Calleja, F., Díaz, C., Alcamí, M., Martín, N., Vázquez de Parga, A.L., Martín, F., Miranda, R.: Long-range magnetic order in a purely organic 2D layer adsorbed on epitaxial graphene. Nat. Phys. 9, 368–374 (2013) CrossRefGoogle Scholar
  14. 14.
    Zhu, X., Zhu, Y., Murali, S., Stoller, M.D., Ruoff, R.S.: Nanostructured Reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5(4), 3333–3338 (2011) CrossRefGoogle Scholar
  15. 15.
    Wang, C., Feng, C., Gao, Y., Ma, X., Wu, Q., Wang, Z.: Preparation of a graphene-based magnetic nanocomposite for the removal of an organic dye from aqueous solution. Chem. Eng. J. 173(1), 92–97 (2011) CrossRefGoogle Scholar
  16. 16.
    Li, D., Müller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G.: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008) CrossRefADSGoogle Scholar
  17. 17.
    Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., Yu, G.: Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9(5), 1752–1758 (2009) CrossRefADSGoogle Scholar
  18. 18.
    Wang, C., Li, D., Too, C.O., Wallace, G.G.: Electrochemical properties of graphene paper electrodes used in Lithium batteries. Chem. Mater. 21, 2604–2606 (2009) CrossRefGoogle Scholar
  19. 19.
    Sampanthar, J.T., Zeng, H.C.: Arresting Butterfly-like intermediate nanocrystals of beta-Co(OH)2 via Ethylenediamine-Mediated synthesis. J. Am. Chem. Soc. 124(23), 6668–6675 (2002) CrossRefGoogle Scholar
  20. 20.
    Paredes, J.I., Villar-Rodil, S., Martinez-Alonso, A., Tascon, J.M.D.: Graphene oxide dispersions in organic solvents. Langmuir 24, 10560–10564 (2008) CrossRefGoogle Scholar
  21. 21.
    Uk Lee, H., Young Yoo, H., Lkhagvasuren, T., Seok Song, Y., Park, C., Kim, J., Kim, S.W.: Enzymatic fuel cells based on electrodeposited graphite oxide/cobalt hydroxide/chitosan composite-enzyme electrode. Biosens. Bioelectron. 42, 342–348 (2013) CrossRefGoogle Scholar
  22. 22.
    Takada, T., Bando, Y., Kiyama, M., Miyamoto, H., Sato, T.: The magnetic property of beta-Co(OH)2. J. Phys. Soc. Jpn. 21, 2726 (1966) CrossRefADSGoogle Scholar
  23. 23.
    Wang, H., Casalongue, H.S., Liang, Y., Dai, H.: Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 132(21), 7472–7477 (2010) CrossRefGoogle Scholar
  24. 24.
    Mauger, A.: Magnetic polaron: Theory and experiment. Phys. Rev. B 27(4), 2308–2324 (1983) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Feng Liu
    • 1
  • Shuangli Ye
    • 1
  • Huijin Guo
    • 2
  • Min Zhai
    • 1
  • Jun Qian
    • 2
  1. 1.Institute of Microelectronics and Information TechnologyWuhan UniversityWuhanP.R. China
  2. 2.Department of Printing and PackagingWuhan UniversityWuhanP.R. China

Personalised recommendations