Effects of Zn Doping on Superconductivity in Tl0.4K0.4Fe2−δx Zn x Se2

  • Guohong Liu
  • Li Zhang
  • Yan Deng
  • Dong Wang
  • Yi Yu
Original Paper


We have studied the transport and magnetic properties of the Tl0.4K0.4Fe2−δx Zn x Se2 (nominal ratio 0.01≤x≤0.15) single crystal samples. It is found that although Zn doping leads to a decrease of charge carrier density, it does not affect the superconductivity significantly when x≤0.1. The doped superconductors exhibit properties similar to the parent compound (Tl0.4K0.4Fe2−δ Se2), e.g., the almost unchanged superconducting transition temperature (T c) and the “hump”-like behavior in the resistivity curves, which denotes the transition from insulating phase to metallic phase. As the doping density rises, the hump obviously shifts to low temperature region, implying the quick enlargement of the ratio of insulating phase. The most plausible explanation for the above phenomena is that the Zn impurities prefer entering into the insulating phase only, therefore, merely hindering the formation of superconducting phase without directly changing its properties. The ESR measurement gives low signal-to-noise ratio and just weak paramagnetic signals, revealing strong itinerancy of the Zn doped superconductor.


Superconductivity Zn doping Iron-based superconductor 



This work was supported by the National Natural Science Foundation of China (Grant No. 11104001).


  1. 1.
    Guo, J.G., Jin, S.F., Wang, G., Wang, S.C., Zhu, K.X., Zhou, T.T., He, M., Chen, X.L.: Phys. Rev. B 82, 180520(R) (2010) CrossRefADSGoogle Scholar
  2. 2.
    Wang, A.F., Ying, J.J., Yan, Y.J., Liu, R.H., Luo, X.G., Li, Z.Y., Wang, X.F., Zhang, M., Ye, G.J., Cheng, P., Xiang, Z.J., Chen, X.H.: Phys. Rev. B 83, 060512(R) (2011) CrossRefADSGoogle Scholar
  3. 3.
    Wang, H.D., Dong, C.H., Li, Z.J., Mao, Q.H., Zhu, S.S., Feng, C.M., Yuan, H.Q., Fang, M.H.: Europhys. Lett. 93, 47004 (2011) CrossRefADSGoogle Scholar
  4. 4.
    Fang, M.H., Wang, H.D., Dong, C.H., Li, Z.J., Feng, C.M., Chen, J., Yuan, H.Q.: Europhys. Lett. 94, 27009 (2011) CrossRefADSGoogle Scholar
  5. 5.
    Zhang, Y., Yang, L.X., Xu, M., Ye, Z.R., Chen, F., He, C., Xu, H.C., Jiang, J., Xie, B.P., Ying, J.J., Wang, X.F., Chen, X.H., Hu, J.P., Matsunami, M., Kimura, S., Feng, D.L.: Nat. Mater. 10, 273 (2011) CrossRefADSGoogle Scholar
  6. 6.
    Qian, T., Wang, X.P., Jin, W.C., Zhang, P., Richard, P., Xu, G., Dai, X., Fang, Z., Guo, J.G., Chen, X.L., Ding, H.: Phys. Rev. Lett. 106, 187001 (2011) CrossRefADSGoogle Scholar
  7. 7.
    Wang, Z., Song, Y.J., Shi, H.L., Wang, Z.W., Chen, Z., Tian, H.F., Chen, G.F., Guo, J.G., Yang, H.X., Li, J.Q.: Phys. Rev. B 83, 140505(R) (2011) CrossRefADSGoogle Scholar
  8. 8.
    Wang, M., Wang, M., Li, G.N., Huang, Q., Li, C.H., Tan, G.T., Zhang, C.L., Cao, H., Tian, W., Zhao, Y., Chen, Y.C., Lu, X.Y., Sheng, B., Luo, H.Q., Li, S.L., Fang, M.H., Zarestky, J.L., Ratcliff, W., Lumsden, M.D., Lynn, J.W., Dai, P.: Phys. Rev. B 84, 094504 (2011) CrossRefADSGoogle Scholar
  9. 9.
    Li, W., Ding, H., Deng, P., Chang, K., Song, C., He, K., Wang, L., Ma, X., Hu, J., Chen, X., Xue, Q.: Nat. Phys. 8, 126 (2012) CrossRefGoogle Scholar
  10. 10.
    Li, W., Ding, H., Li, Z., Deng, P., Chang, K., He, K., Ji, S., Wang, L., Ma, X., Hu, J., Chen, X., Xue, Q.: Phys. Rev. Lett. 109, 057003 (2012) CrossRefADSGoogle Scholar
  11. 11.
    Guo, Y.F., Shi, Y.G., Yu, S., Belik, A.A., Matsushita, Y., Tanaka, M., Katsuya, Y., Kobayashi, K., Nowik, I., Felner, I., Awana, V.P.S., Yamaura, K., Takayama-Muromachi, E.: Phys. Rev. B 82, 054506 (2010) CrossRefADSGoogle Scholar
  12. 12.
    Cheng, P., Shen, B., Hu, J., Wen, H.-H.: Phys. Rev. B 81, 174529 (2010) CrossRefADSGoogle Scholar
  13. 13.
    Yu, Y., Zhang, C.J., Tong, W., Zhang, L., Tan, D., Pi, L., Yang, Z.R., Tian, M.L., Tan, S., Zhang, Y.H.: New J. Phys. 14, 023032 (2012) CrossRefADSGoogle Scholar
  14. 14.
    Tan, D., Zhang, C., Xi, C., Ling, L., Zhang, L., Tong, W., Yu, Y., Feng, G., Yu, H., Pi, L., Yang, Z., Tan, S., Zhang, Y.: Phys. Rev. B 84, 014502 (2011) CrossRefADSGoogle Scholar
  15. 15.
    Wu, T., Ying, J.J., Wu, G., Liu, R.H., He, Y., Chen, H., Wang, X.F., Xie, Y.L., Yan, Y.J., Chen, X.H.: Phys. Rev. B 79, 115121 (2009) CrossRefADSGoogle Scholar
  16. 16.
    Dengler, E., Deisenhofer, J., Krug von Nidda, H.-A., Khim, S., Kim, J.S., Kim, K.H., Casper, F., Felser, C., Loidl, A.: Phys. Rev. B 81, 024406 (2010) CrossRefADSGoogle Scholar
  17. 17.
    Feng, G., Zuo, M., Tan, S., Xi, C., Ling, L., Zhang, L., Tong, W., Liu, H., Yu, H., Pi, L., Zhang, C., Zhang, Y.: Europhys. Lett. 100, 47003 (2012) CrossRefADSGoogle Scholar
  18. 18.
    McGinnis, W.C., Briggs, J.S.: J. Mater. Res. 7, 585 (1992) CrossRefADSGoogle Scholar
  19. 19.
    Jiao, L., Kohama, Y., Zhang, J.L., Wang, H.D., Maiorov, B., Balakirev, F.F., Chen, Y., Wang, L.N., Shang, T., Fang, M.H., Yuan, H.Q.: Phys. Rev. B 85, 064513 (2012) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Guohong Liu
    • 1
  • Li Zhang
    • 1
  • Yan Deng
    • 1
  • Dong Wang
    • 1
  • Yi Yu
    • 2
    • 3
  1. 1.Anhui University of ArchitectureHefeiPeople’s Republic of China
  2. 2.High Magnetic Field LaboratoryChinese Academy of Sciences and University of Science and Technology of ChinaHefeiPeople’s Republic of China
  3. 3.Hefei National Laboratory for Physical Sciences at the MicroscaleHefeiPeople’s Republic of China

Personalised recommendations