Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 27, Issue 1, pp 177–181 | Cite as

Synthesis and Magnetic Properties of Bulk Ferrites Spinels Ni0.5Zn0.5Fe2O4: Experimental an Ab-Initio Study

  • R. Masrour
  • H. El Moussaoui
  • E. Salmani
  • O. Mounkachi
  • H. Ez-Zahraouy
  • M. Hamedoun
  • E. K. Hlil
  • A. Benyoussef
Original Paper

Abstract

Polycrystalline Ni0.5Zn0.5Fe2O4 ferrites have been prepared using the solid-state reaction technique. The structure of ferrite was measured using an X-ray diffractometer (XRD). It is shown that the structure of Ni0.5Zn0.5Fe2O4 ferrites is a single spinel structure. The magnetic properties of the samples were tested at room temperature by a superconducting quantum interference device (SQUID) to determine magnetic properties versus temperature and applied magnetic field. Based on first-principles spin-density functional calculations, using the Korringa–Kohn–Rostoker method (KKR) combined with the coherent potential approximation (CPA), the ferromagnetic and half-metallic behaviors was observed with LDA (local density approximation) and LDA–SIC (local density approximation-self-interaction correction) approximation.

Keywords

Polycrystalline Solid-state method Magnetic properties Ab-Initio calculation KKR–CPA 

References

  1. 1.
    Hong, R.Y., Pan, T.T., Han, Y.P., Li, H.Z., Ding, J., Han, S.: J. Magn. Magn. Mater. 310, 37–47 (2007) CrossRefADSGoogle Scholar
  2. 2.
    Bertacco, R., Cantoni, M., Riva, M., Tagliaferri, A., Ciccacci, F.: Appl. Surf. Sci. 252, 1754–1764 (2005) CrossRefADSGoogle Scholar
  3. 3.
    Mahmud, S.T., et al.: Influence of microstructure on the complex permeability of spinel type Ni–Zn ferrite. J. Magn. Magn. Mater. 305, 269–274 (2006) CrossRefADSGoogle Scholar
  4. 4.
    Harris, V.G., et al.: Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321, 2035–2047 (2009) CrossRefADSGoogle Scholar
  5. 5.
    Adam, J.D., et al.: Ferrite devices and materials. IEEE Trans. Microw. Theory Tech. 50, 721–737 (2002) MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    Sugimoto, M.: The past, present and future of ferrites. J. Am. Ceram. Soc. 82, 269–280 (1999) CrossRefGoogle Scholar
  7. 7.
    Adam, A., Ali, Z., Abdeltwab, E., Abbas, Y.: J. Ovonic Res. 5, 157–165 (2009) Google Scholar
  8. 8.
    Antonov, V.N., Harmon, B.N., Yaresko, A.N.: Phys. Rev. B 67, 024417 (2003) CrossRefADSGoogle Scholar
  9. 9.
    Szotek, Z., Temmerman, W.M., Svane, A., Petit, L., Stocks, G.M., Winter, H.: Phys. Rev. B 68, 054415 (2003) CrossRefADSGoogle Scholar
  10. 10.
    Szotek, Z., Temmerman, W.M., Svane, A., Petit, L., Stocks, G.M., Winter, H.: Phys. Rev. B 68, 054415 (2003) CrossRefADSGoogle Scholar
  11. 11.
    Cheng, C.: Phys. Rev. B 71, 052401 (2005) CrossRefADSGoogle Scholar
  12. 12.
    Penicaud, M., Siberchicot, B., Sommers, C.B., Kubler, J.: Calculated electronic band structure and magnetic moments of ferrites. J. Magn. Magn. Mater. 103, 212–220 (1992) CrossRefADSGoogle Scholar
  13. 13.
    Akai, H.: MACHIKANEYAMA2002v08, Department of Physics, Graduate School of Science, Osaka University, Japan (akai@phys.sci.osaka-u.ac.jp) (2002) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • R. Masrour
    • 1
    • 2
  • H. El Moussaoui
    • 2
    • 3
  • E. Salmani
    • 2
  • O. Mounkachi
    • 3
  • H. Ez-Zahraouy
    • 2
  • M. Hamedoun
    • 3
  • E. K. Hlil
    • 4
  • A. Benyoussef
    • 2
    • 3
    • 5
  1. 1.Laboratory of Materials, Processes, Environment and Quality, National School of Applied SciencesCady Ayyed UniversitySafiMorocco
  2. 2.Laboratoire of Magnetism and the Physics of the High Energies, Department of PhysiqueFaculty of ScienceRabatMorocco
  3. 3.Institute of Nanomaterials and NanotechnologiesMAScIRRabatMorocco
  4. 4.Institut NéelCNRS et Université Joseph FourierGrenoble Cedex 9France
  5. 5.Hassan II Academy of Science and TechnologyRabatMorocco

Personalised recommendations