Journal of Superconductivity and Novel Magnetism

, Volume 26, Issue 9, pp 2843–2844 | Cite as

Crossover from Localized Spins to Weak Coupling Charge Carriers: Theory for Nuclear Spin-Lattice Relaxation in Copper Oxide HTSC

Original Paper


The dynamic spin susceptibility \(\chi^{+,-}_{\mathrm{total}}(\omega,{\bf q})\) that takes into account the interplay of localized and itinerant charge carriers exhibits a diffusive-like, extremely narrow and sharp symmetric ring of maxima at very small wave vectors: \(|{\bf q}|=q_{0}\) where q 0ω/J≈10−6 with the Nuclear Magnetic Resonance (NMR) frequency ω and the superexchange coupling constant J together with the peak at the antiferromagnetic wave vector Q=(π,π). The calculated plane copper 63(1/T 1) and oxygen 17(1/T 1) nuclear spin-lattice relaxation rates from carrier-free right up to optimally doped La2−x Sr x CuO4 are in good agreement with experimental data.


NMR/NQR Copper oxide HTSC 


  1. 1.
    Eremin, M.V., Aleev, A., Eremin, I.: J. Exp. Theor. Phys. 106, 752 (2008). ZhETF, 133, 862, 2008 ADSCrossRefGoogle Scholar
  2. 2.
    Imai, T., et al.: Phys. Rev. Lett. 70, 1002 (1993) ADSCrossRefGoogle Scholar
  3. 3.
    Kadanoff, L.P., Martin, P.C.: Ann. Phys. 24, 419 (1963) MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Larionov, I.A.: J. Phys. Condens. Matter 23, 245702 (2011) ADSCrossRefGoogle Scholar
  5. 5.
    Norman, M.R., et al.: Phys. Rev. B 76, 174501 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    Singer, P.M., et al.: Phys. Rev. B 72, 014537 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    Zha, Y., Barzykin, V., Pines, D.: Phys. Rev. B 54, 7561 (1996) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Magnetic Radiospectroscopy Laboratory, Institute of PhysicsKazan Federal UniversityKazanRussia

Personalised recommendations