Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 26, Issue 11, pp 3325–3329 | Cite as

Antiferromagnetically Spin Polarized Oxygen and Manganese in MnO Layers Investigated by First Principle and Series Expansions Calculations

  • R. Masrour
  • E. K. Hlil
  • M. Hamedoun
  • A. Benyoussef
  • O. Mounkachi
  • L. Bahmad
Original Paper

Abstract

Self-consistent ab initio calculations, based on DFT (Density Functional Theory) approach and using the FLAPW (Full potential Linear Augmented Plane Wave) method, are performed to investigate both electronic and magnetic properties of the MnO layers. Polarized spin and spin-orbit coupling are included in calculations within the framework of the antiferromagnetic state between two adjacent Mn layers. Magnetic moment considered to lie along (110) axes are computed. Obtained data from ab initio calculations are used as input for the high temperature series expansions (HTSEs) calculations to compute other magnetic parameters.

The exchange integrals between the magnetic atoms Mn–Mn and Mn–O in the same layer and between the adjacent bilayers are given by using the mean field theory. The antiferromagnetic energies of MnO layers are obtained. The High Temperature Series Expansions (HTSEs) of the magnetic susceptibility on MnO antiferromagnetic layers through Heisenberg and XY models is given up to tenth order series in (x=J Mn–Mn/k B T). The reduced Néel temperature x N is obtained by HTSEs of the magnetic susceptibility and by using the Padé approximant method. The critical exponent γ associated with the magnetic susceptibility is deduced.

Keywords

MnO layers Electronic and magnetic structure Magnetic moment DOS Néel temperature Exchange interactions HTSE Magnetic energies Critical exponents 

References

  1. 1.
    Ohno, H.: Science 281, 951 (1998) CrossRefADSGoogle Scholar
  2. 2.
    Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Science 287, 1019 (2000) CrossRefADSGoogle Scholar
  3. 3.
    Cox, P.A.: Transition Metal Oxides: An Introduction to Their Electronic Structure and Properties. The International Series of Monographs on Chemistry. Clarendon Press, Oxford (1995) Google Scholar
  4. 4.
    Roth, W.L.: Phys. Rev. 110, 1333 (1958) CrossRefADSGoogle Scholar
  5. 5.
    Cheetham, A.K., Hope, D.A.O.: Phys. Rev. B 27, 6964 (1983) CrossRefADSGoogle Scholar
  6. 6.
    Schrön, A., Rödl, C., Bechstedt, F.: Phys. Rev. 82, 165109 (2010) CrossRefGoogle Scholar
  7. 7.
    Han, M.J., Ozaki, T., Yu, J.: J. Chem. Phys. 123, 034306 (2005) CrossRefADSGoogle Scholar
  8. 8.
    Han, M.J., Ozaki, T., Yu, J.: Phys. Rev. B 73, 045110 (2006) CrossRefADSGoogle Scholar
  9. 9.
    Peng, G., et al.: J. Am. Chem. Soc. 116, 2914 (1994) CrossRefGoogle Scholar
  10. 10.
    Matsumoto, M., Kaneko, T., Kamigaki, K.: J. Phys. Soc. Jpn. 25, 631 (1968) CrossRefADSGoogle Scholar
  11. 11.
    Baker, G.A., Graves-Morris, P. (eds.): Padé Approximants. Addison-Wesley, London (1981) Google Scholar
  12. 12.
    Blaha, P., Schwartz, K., Sorantin, P., Trikey, S.B.: Comput. Phys. Commun. 59, 399 (1990) CrossRefADSGoogle Scholar
  13. 13.
    Holland, W.E., Brown, H.A.: Phys. Status Solidi A 10, 249 (1972) CrossRefADSGoogle Scholar
  14. 14.
    Moron, M.C.: J. Phys. Condens. Matter 8, 11141 (1996) CrossRefADSGoogle Scholar
  15. 15.
    Stanley, H.E., Kaplan, T.A.: Phys. Rev. Lett. 16, 981 (1966) MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    Pan, K.-K.: Physica A 391, 1984 (2012) CrossRefADSGoogle Scholar
  17. 17.
    Kosterlitz, J.M., Thouless, D.J.: J. Phys. C 5, L124 (1973) CrossRefGoogle Scholar
  18. 18.
    George, A., Baker, Jr., Nickel, B.G., Meiron, D.I.: Phys Rev. B 17, 1365 (1978) CrossRefADSGoogle Scholar
  19. 19.
    Carr, C.E.H.Y.: Phys. Rev. Lett. 39, 1558 (1977) CrossRefADSGoogle Scholar
  20. 20.
    Ferrer, M., Moore, M.A., Wortis, M.: Phys. Rev. B 8, 5205 (1973) CrossRefADSGoogle Scholar
  21. 21.
    Swendsen, R.H.: Phys. Rev. B 27, 391 (1983) CrossRefADSGoogle Scholar
  22. 22.
    Wilson, K.G.: Phys. Rev. Lett. 28, 548 (1972) CrossRefADSGoogle Scholar
  23. 23.
    Sardar, S., Chakraborty, K.G.: Physica A 238, 317 (1997) CrossRefADSGoogle Scholar
  24. 24.
    Van Dyke, J.P., Camp, W.J.: Phys. Rev. B 9, 3121 (1974) CrossRefADSGoogle Scholar
  25. 25.
    Griffiths, R.B.: Phys. Rev. 158, 557 (1967) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • R. Masrour
    • 1
    • 2
  • E. K. Hlil
    • 3
  • M. Hamedoun
    • 4
  • A. Benyoussef
    • 2
    • 4
    • 5
  • O. Mounkachi
    • 4
  • L. Bahmad
    • 2
  1. 1.Laboratory of Materials, Processes, Environment and Quality, National School of Applied SciencesCady Ayyed UniversitySafiMorocco
  2. 2.LMPHE (URAC 12), Faculty of ScienceMohammed V-Agdal UniversityRabatMorocco
  3. 3.Institut NéelCNRS et Université Joseph FourierGrenoble cedex 9France
  4. 4.Institute of Nanomaterials and NanotechnologiesMAScIRRabatMorocco
  5. 5.Hassan II Academy of Science and TechnologyRabatMorocco

Personalised recommendations