Journal of Superconductivity and Novel Magnetism

, Volume 26, Issue 11, pp 3209–3214 | Cite as

X-Ray and High-Resolution Neutron Diffraction Studies on Nd x Y1−x Ba2Cu3O7−δ Superconductors

  • W. G. Suharta
  • H. Mugirahardjo
  • S. Pratapa
  • D. Darminto
  • S. Suasmoro
Original Paper


A synthesis of neodymium-substituted YBCO superconductor Nd x Y1−x Ba2Cu3O7−δ (x=0,0.25,0.5,0.75,1) has been done using a dissolved method in order to obtain homogeneous crystals and higher critical current density. The effects of the substitutions on the structural and magnetic properties of the superconductors after sintering at 970 C have been examined. Crystallinity of the synthesized powders was confirmed using X-ray and high-resolution neutron diffraction (XRD and HRPD) techniques. Rietveld analyses for both diffraction data sets gave increasing lattice parameters with addition of Nd content and decreasing orthorhombicity. Such addition also caused a decrease in occupancy of the oxygen in the O(4) site. Further investigation using SQUID showed critical temperature of the superconductors between 90.9 and 92.0 K. The critical current density (J c ) was calculated from the magnetic hysteretic loop at 5 K as 40 kA cm−2 for Nd0.25Y0.75Ba2Cu3O7−δ sample and 100 kA cm−2 for Nd0.5Y0.5Ba2Cu3O7−δ sample. We also found that increasing Nd content on the Nd x Y1−x Ba2Cu3O7−δ superconductor samples can improve their resilience of superconductivity and critical current density.


YBCO superconductor Dissolved method X-ray and high-resolution neutron powder diffraction Structure dc-susceptibility 



This work was partially supported by “Hibah Riset Pascasarjana” provided by DP2M, Directorate General of Higher Education (DGHE) of Indonesia, under the contract No. 762/I2.7/PM/2011. One of us (WGS) would like to thank DGHE for the scholarship through BPPS Program and funding of Sandwich Program to Japan in 2011. The use of SQUID magnetometer at RIKEN Nishina Center, Japan, is gratefully appreciated.


  1. 1.
    Rostila, L., Lehtonen, J., Masti, M., Lallouet, N., Saugrain, J.M., Allais, A., Schippl, K., Schmidt, G.B.F., Marot, G., Ravex, A., Usoskin, A., Gomory, F., Klinčok J, B.: Design of a 30 m long 1 kA 10 kV YBCO cable. Supercond. Sci. Technol. 19, 418 (2006) CrossRefADSGoogle Scholar
  2. 2.
    Mukoyama, S., Yagi, M., Hirano, N., Amemiya, N., Kashima, N., Nagaya, S., Izumi, T., Shiohara, Y.: Study of an YBCO HTS transmission cable system. Physica C 463–465, 1150–1153 (2007) CrossRefGoogle Scholar
  3. 3.
    Maguire, J., Folts, D., Yuan, J., Lindsay, D., Knoll, D., Bratt, S., Wolff, Z., Kurtz, S.: Development and demonstration of a fault current limiting HTS cable to be installed in the Con Edison grid. IEEE Trans. Appl. Supercond. 19, 1740 (2009) CrossRefADSGoogle Scholar
  4. 4.
    Tixador, P.: Development of superconducting power devices in Europe. Physica C 470, 971–979 (2010) CrossRefADSGoogle Scholar
  5. 5.
    Suasmoro, S., Khalfi, M.F., Khafi, A., Trolliard, G., Smith, D.S., Bonnet, J.P.: Microstructural and electrical characterization of bulk YBa2Cu3O7−d ceramics. Ceram. Int. 38, 29–38 (2012) CrossRefGoogle Scholar
  6. 6.
    Cui, C.-g., Liu, F.-s., Mou, H.-l., Wang, T.-c., Li, S.-l., Li, J., Hongyue, L., Zhou, L., Wu, X.-z.: Critical currents in melt textured YBa2Cu3Oy superconductors. Cryogenics 30, 603–605 (1990) CrossRefADSGoogle Scholar
  7. 7.
    Jiao, Y.L., Xiao, L., Ren, H.T., Zheng, M.H., Chen, Y.X.: Jc–B characteristics for bulk single domain YBCO superconductors. Physica C 386, 266–270 (2003) CrossRefADSGoogle Scholar
  8. 8.
    Yoo, S.I., Sakai, N., Takaichi, H., Higuchi, T., Murakami, M.: Melt processing for obtaining NdBa2Cu3Oy superconductors with high T c and large J c. Appl. Phys. Lett. 65, 633 (1994) CrossRefADSGoogle Scholar
  9. 9.
    Schätzle, P., Bieger, W., Wiesner, U., Verges, P., Krabbes, G.: Melt processing of (Nd,Y)BaCuO and (Sm,Y)BaCuO composites. Supercond. Sci. Technol. 9, 869 (1996) CrossRefADSGoogle Scholar
  10. 10.
    Bieger, W., Wiesner, U., Krabbes, G., Schätzle, P., Bauer, A., Verges, P., Zelenina, L.: Melt texturing and properties control of Nd1+yBa2−yCu3Ox bulk materials. J. Low Temp. Phys. 105, 1445–1450 (1996) CrossRefADSGoogle Scholar
  11. 11.
    Knizhnik, A., Shter, G.E., Grader, G.S., Reisner, G.M., Eckstein, Y.: Interrelation of preparation conditions, morphology, chemical reactivity and homogeneity of ceramic YBCO. Physica C 400, 25–35 (2003) CrossRefADSGoogle Scholar
  12. 12.
    Rodriguez-Carvajal, J.: An introduction to the program FullProf 2000. Laboratoire Leon Brillouin (CEA-CNRS), France, Version 2001 Google Scholar
  13. 13.
    Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976) CrossRefADSGoogle Scholar
  14. 14.
    Darminto, D., Tjia, M.O., Motohashi, T., Kobayashi, H., Nakayama, Y., Shimoyama, J., Kishio, K.: Effects of Pb substitution on the vortex state of oxygen-overdoped Bi2Sr2CaCu2O8+d single crystal. Phys. Rev. B 62, 10 (2000) CrossRefGoogle Scholar
  15. 15.
    Li, Y., Liu, Y., Duan, R., Xiong, X., Wang, B., Cao, G., Wei, L., Zheng, D.N., Zhao, Z.X., Ross, J.H. Jr.: Positron annihilation study of the O-T phase transition for Eu1+xBa2−xCu3O7−d superconductors. Physica C 402, 179–187 (2004) CrossRefADSGoogle Scholar
  16. 16.
    Ehmann, E., Glaser, J., Kemmler-Sack, S., Losch, S., Rentschler, T., Wischert, W., Zoller, P., Kessler, P., Lichte, H.: Superconductivity and substitution of Bi-1212. Physica C 215, 83–91 (1993) CrossRefADSGoogle Scholar
  17. 17.
    Rentschler, T., Kemmler-Sack, S., Kessler, P., Lichte, H.: Superconducting properties of Pb-free and Pb-substituted bulk ceramics of Bi-2212 cuprates. Physica C 219, 167–175 (1994) CrossRefADSGoogle Scholar
  18. 18.
    Elschner, S., Gauss, S.: Magnetic properties of melt processed and sintered Y–Ba–Cu–O. Supercond. Sci. Technol. 5, 300 (1992) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • W. G. Suharta
    • 1
    • 2
  • H. Mugirahardjo
    • 3
  • S. Pratapa
    • 1
  • D. Darminto
    • 1
  • S. Suasmoro
    • 1
  1. 1.Department of Physics, Faculty of Mathematics and Natural SciencesInstitute of Technology Sepuluh NopemberSurabayaIndonesia
  2. 2.Department of Physics, Faculty of Mathematics and Natural SciencesUdayana UniversityJimbaranIndonesia
  3. 3.Center for Technology of Nuclear Industrial MaterialsPuspiptek SerpongIndonesia

Personalised recommendations