Nanostructure, Composition, and Magnetic Behavior of Mechanically Alloyed Fe–Mo

  • Y. Jirásková
  • J. Buršík
  • I. Turek
Original Paper


Iron and molybdenum powder mixture exposed to stepwise mechanical alloying in air and in nitrogen is studied by X-ray diffraction, Mössbauer spectrometry, electron microscopy, magnetic measurements, and differential thermal analysis. The Mössbauer spectra are interpreted in terms of various contributions. The main contribution is associated with the FeMo nanograin core, which is similar to the bcc-FeMo bulk alloy of the same composition, i.e., a ferromagnetic solid solution of Mo in Fe. The increasing milling time contributes to a decrease in grain size. It results in a decrease of the volume fraction of the grain cores and simultaneously to an increase in a volume fraction of other contributions of highly defected surface zones and very close surface layers influenced by the milling atmosphere. The Rietveld interpretation of diffraction patterns, the scanning, and transmission electron microscopy completed by the EDX analysis and magnetic measurements are in good agreement with the Mössbauer spectra interpretation.


Nanostructured material Mechanical alloying Magnetic properties Grain core Defects 



The authors thank M. Hapla and Dr. A. Kroupa for magnetic and DTA measurements and the Czech Science Foundation (P108/11/1350) for financial support.


  1. 1.
    Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1–184 (2001) CrossRefGoogle Scholar
  2. 2.
    Otmane, F., et al.: Structural, mechanical and magnetic properties of mechanically alloyed Fe40Co60 powders. Defect Diffus. Forum 312–315, 743–747 (2011) ADSCrossRefGoogle Scholar
  3. 3.
    Jartych, E.: Local Atomic Order in nanocrystalline Fe-based alloys obtained by mechanical alloying. J. Magn. Magn. Mater. 265, 176–188 (2003) ADSCrossRefGoogle Scholar
  4. 4.
    Jartych, E., et al.: Structure and hyperfine interactions in mechanosynthesized iron-molybdenum alloys. J. Alloys Compd. 337, 69–75 (2002) CrossRefGoogle Scholar
  5. 5.
    Moumeni, H., et al.: Formation of ball-milled Fe-Mo nanostructured powders. J. Alloys Compd. 419, 140–144 (2006) CrossRefGoogle Scholar
  6. 6.
    Jirásková, Y., et al.: Microstructure and physical properties of mechanically alloyed Fe-Mo powder. J. Alloys Compd. 477, 55–61 (2009) CrossRefGoogle Scholar
  7. 7.
    D’Incau, M., et al.: High-energy grinding of FeMo powder. J. Mater. Res. 22, 1744–1753 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    Young, R.A. (ed.): The Rietveld Metod. International Union of Crystallography, Oxford University Press, Oxford (1993) Google Scholar
  9. 9.
    Žák, T., Jirásková, Y.: CONFIT: Mössbauer spectra fitting program. Surf. Interface Anal. 38, 710–714 (2006) CrossRefGoogle Scholar
  10. 10.
    Fuchs, A., Ilschner, B.: Gitterkonstanten von Fe-Mo-Legierungen mit Mo-Gehalt bis 20 Gew. -Prozent. Acta Crystallogr. 19, 488–491 (1965) CrossRefGoogle Scholar
  11. 11.
    Turek, I., et al.: Electronic structure of disordered alloys, surfaces and interfaces. Kluwer Academic, Boston (1997) CrossRefGoogle Scholar
  12. 12.
    Chien, C.L., et al.: Structural and magnetic behavior of vapor quenched Fe-Mo alloys. J. Magn. Magn. Mater. 54–57, 291–292 (1986) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.CEITEC IPMInstitute of Physics of Materials AS CRBrnoCzech Republic
  2. 2.Institute of Physics of Materials AS CRBrnoCzech Republic

Personalised recommendations