Filamentary MgB2 Superconductors with Titanium Barriers

  • P. Kováč
  • I. Hušek
  • T. Melišek
  • L. Kopera
  • M. Polák
Original Paper


Ti diffusion barrier has been applied for several Cu stabilized MgB2 wires. Pure Ti is well formable metal allowing formation of thin barrier layers which are not reacting with MgB2. Instead of, Ti is able to purify MgB2 filaments by absorbing some impurities during the final heat treatment. Ti has comparable coefficient of thermal expansion with MgB2, which allows heat treatment at higher temperatures than for Nb barrier wires. Consequently, higher critical current densities can be obtained with Ti. Higher Ti resistivity offers a depressing of coupling currents in AC regime. One disadvantage of Ti is the inter-diffusion with copper during annealing and partial contamination of Cu stabilization. Benefits of Ti diffusion barrier have been utilized for the manufacture of fine-filamentary wires with minimal filament diameter of 10 μm. High critical current densities and high resistances to tensile stress and torsion stress at twisting have been demonstrated for these wires. AC loss measurements have shown reduced losses with decreased filament size and with shortened twist pitch.


MgB2 Ti barrier Critical currents Stability AC losses 



This work was supported by the Slovak Scientific Agency under the project APVV-0495-10 and grant agency VEGA 2/0121/12.


  1. 1.
    Suenaga, M., Clark, A.F.: Filamentary A15 Superconductors. Plenum, New York (1980) CrossRefGoogle Scholar
  2. 2.
    Kováč, P., Hušek, I., Melišek, T., Holúbek, T.: Properties of stabilized MgB2 composite wire with Ti barrier. Supercond. Sci. Technol. 20, 771 (2007) ADSCrossRefGoogle Scholar
  3. 3.
  4. 4.
    Malagoli, A., et al.: Study of the superconducting and thermal properties of ex situ GlidCop-sheathed practical MgB2 conductors. IEEE Trans. Appl. Supercond. 19, 3670 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    Kario, A., et al.: Ex situ MgB2 barrier behaviour of monofilament in situ MgB2 wires with GlidCop® sheath material. Supercond. Sci. Technol. 23, 115007 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    Kim, J.H., et al.: Influence of hot-pressing on MgB2/Nb/Monel wires. Physica C 470, 1426 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    Alessandrini, M., et al.: High critical current of Ti-sheathed MgB2 wires for AC and weight-critical applications. Supercond. Sci. Technol. 19, 129 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    Kováč, P., Hušek, I., Melišek, T., Kopera, L., Reissner, M.: Cu stabilized MgB2 composite wire with an NbTi barrier. Supercond. Sci. Technol. 23, 025014 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    Kováč, P., Hušek, I., Melišek, T., Kopera, L., Reissner, M.: Stainless steel reinforced multi-core MgB2 wire subjected to variable deformations, heat treatments and mechanical stressing. Supercond. Sci. Technol. 23, 065010 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    Hušek, I., Kováč, P.: Mechanical properties, interface reactions and transport current densities of multi-core MgB2/Ti/Cu/SS wire. Supercond. Sci. Technol. 23, 075012 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    Kováč, P., Hušek, I., Rosová, A., Melišek, T., Kopera, L.: Fine-filamentary in-situ MgB2 wires. Supercond. Sci. Technol. 23, 105006 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    Rosová, A., Kováč, P., Hušek, I., Kopera, L.: EDX and ion beam treatment studies of filamentary in-situ MgB2 wires with Ti barrier. J. Alloys Compd. 509, 7961 (2011) CrossRefGoogle Scholar
  13. 13.
    Kováč, P., Hušek, I., Pachla, W., Kulczyk, M., Melišek, T., Dvorak, T.: As-deformed filament’s density and transport currents of MgB2/Ti/Glidecoop wire. J. Alloys Compd. 509, 8783 (2011) CrossRefGoogle Scholar
  14. 14.
    Kováč, P., Hušek, I., Melišek, T., Kopera, L.: Current densities of thin-filaments MgB2/Ti/Glidcop wire. Supercond. Sci. Technol. 24, 105006 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    Kováč, P., Hušek, I., Kopera, L., Melišek, T.: Filamentary MgB2 wires twisted before and after heat treatment. Supercond. Sci. Technol. 24, 115006 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    Kováč, P., Kopera, L.: Electromechanical properties of filamentary MgB2 wires. IEEE Trans. Appl. Supercond. 22, 8400106 (2012) CrossRefGoogle Scholar
  17. 17.
    Polák, M., et al.: AC losses and transverse resistivity in filamentary MgB2 tape with Ti barriers. Physica C 471, 389 (2011) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • P. Kováč
    • 1
  • I. Hušek
    • 1
  • T. Melišek
    • 1
  • L. Kopera
    • 1
  • M. Polák
    • 1
  1. 1.Institute of Electrical EngineeringSASBratislavaSlovakia

Personalised recommendations