Characterizations of NiCu/Cu Multilayers: Dependence of Nonmagnetic Layer Thickness

  • Hilal Kuru
  • Hakan Kockar
  • Mursel Alper
Original Paper


A series of NiCu/Cu multilayers were grown on (110) textured polycrystalline Cu substrates from a single electrolyte under potentiostatic deposition conditions. Microstructure, magnetoresistance and magnetic properties of the multilayers were investigated as a function of the nonmagnetic layer thicknesses. The structural studies by X-ray diffraction revealed that the multilayers have face-centered-cubic structure with preferred (110) crystal orientation as their substrates. The composition of the deposits determined by energy dispersive X-ray spectroscopy showed that the Cu content of the films increased as the Cu layer thickness increased. The scanning electron microscope studies showed that samples have homogeneous and smooth surfaces. Multilayers exhibited either anisotropic magnetoresistance (AMR) or giant magnetoresistance (GMR) depending on the non-magnetic Cu layer thickness. The multilayers with Cu layer thickness thicker than 0.7 nm exhibited GMR, but the AMR effect was observed to be dominant for the Cu layer thickness less than 0.7 nm. The GMR curves are broad in shape and the nonsaturated curves indicated the predominance of a superparamagnetic contribution. The GMR magnitudes of NiCu/Cu multilayers are found to be about 1–1.5 %. The vibrating sample magnetometer measurements revealed that the saturation magnetization decrease with increasing nonmagnetic layer thickness. The changes in the magnetic and magnetotransport properties might arise from the change in the Ni and Cu content of the samples caused by the variation of Cu layer thicknesses.


Electrodeposition NiCu/Cu multilayers GMR XRD Magnetic films 



This work is supported by Balikesir University, Turkey, under Grant No. BAP 2006/37. The authors would like to thank State Planning Organization, Turkey, under Grant No. 2005K120170 for the VSM system, Scientific and Technical Research Council of Turkey (TUBITAK) under Grant No. TBAG-1771 for the electrodeposition system and Balikesir University, Turkey, under Grant No. BAP 2001/02 for the MR system. Thanks also go to the Material Science and Engineering Department, Anadolu University, Turkey, for the use of XRD and SEM-EDX measurements.


  1. 1.
    Baibich, M.N., Broto, J.M., Fert, A., van Dau, N.F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J.: Giant magnetoresistance of Fe/Cr magnetic superlattices. Phys. Rev. Lett. 61(21), 2472–2475 (1988) ADSCrossRefGoogle Scholar
  2. 2.
    Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W.: Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39(7), 4828–4830 (1989) ADSCrossRefGoogle Scholar
  3. 3.
    Schwarzacher, W., Lashmore, D.S.: Giant magnetoresistance in electrodeposited films. IEEE Trans. Magn. 32(4), 3133–3153 (1996) ADSCrossRefGoogle Scholar
  4. 4.
    Alper, M., Schwarzacher, W., Lane, S.J.: The effect of pH changes on the giant magnetoresistance of electrodeposited superlattices. J. Electrochem. Soc. 144, 2346 (1997) CrossRefGoogle Scholar
  5. 5.
    Alper, M., Kockar, H., Safak, M., Baykul, M.C.: Comparison of Ni–Cu alloy films electrodeposited at low and high pH levels. J. Alloys Compd. 453, 15–19 (2008) CrossRefGoogle Scholar
  6. 6.
    Esmaili, S., Bahrololoom, M.E., Peter, L.: Magnetoresistance of electrodeposited NiFeCu alloys. Thin Solid Films 520, 2190–2194 (2012) ADSCrossRefGoogle Scholar
  7. 7.
    Nabiyouni, G., Schwarzacher, W.: Dependence of GMR on crystal orientation in electrodeposited Co–Ni–Cu/Cu superlattices. J. Magn. Magn. Mater. 156, 355–356 (1996) ADSCrossRefGoogle Scholar
  8. 8.
    Toth, J., Kiss, L.F., Toth-Kadar, E., Dinia, A., Pierron-Bohnes, V., Bakonyi, I.: Giant magnetoresistance and magnetic properties of electrodeposited Ni81Cu19/Cu multilayers. J. Magn. Magn. Mater. 198–199, 243–245 (1999) CrossRefGoogle Scholar
  9. 9.
    Toth-Kadar, E., Peter, L., Becsei, T., Toth, J., Pogany, L., Tornoczi, T., Kamasa, P., Bakonyi, I., Lang, G., Cziraki, A., Schwarzacher, W.: Preparation and magnetoresistance characteristics of electrodeposited Ni–Cu alloys and Ni–Cu/Cu multilayers. J. Electrochem. Soc. 147, 3311–3318 (2000) CrossRefGoogle Scholar
  10. 10.
    Bakonyi, I., Toth, J., Goualou, L., Becsei, T., Toth-Kadar, E., Schwarzacher, W., Nabiyouni, G.: Giant magnetoresistance of electrodeposited Ni81Cu19/Cu multilayers. J. Electrochem. Soc. 149, 195–200 (2002) CrossRefGoogle Scholar
  11. 11.
    Bakonyi, I., Toth, J., Kiss, L.F., Toth-Kadar, E., Peter, L., Dinia, A.: Origin of giant magnetoresistance contributions in electrodeposited Ni–Cu/Cu multilayers. J. Magn. Magn. Mater. 269(2), 156–167 (2004) ADSCrossRefGoogle Scholar
  12. 12.
    Kasyutich, O.I., Schwarzacher, W., Fedosyuk, V.M., Laskarzhevskiy, P.A., Masliy, A.I.: Comparison of the structure and magnetotransport properties of Co–Ni–Cu/Cu multilayers electrodeposited on n-GaAs(001) and (111). J. Electrochem. Soc. 147, 2964–2968 (2000) CrossRefGoogle Scholar
  13. 13.
    Cullity, B.D.: Elements of X-Ray Diffraction. Addison-Wesley, Reading (1978) Google Scholar
  14. 14.
    Safak, M., Alper, M., Kockar, H.: Growth and characterisation of electrodeposited Co/Cu superlattices. J. Nanosci. Nanotechnol. 8(2), 854–860 (2008) CrossRefGoogle Scholar
  15. 15.
    Mcguire, T.R., Potter, R.I.: Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Magn. 11(4), 1018–1038 (1975) ADSCrossRefGoogle Scholar
  16. 16.
    Alper, M., Baykul, M.C., Peter, L., Toth, J., Bakonyi, I.: Preparation and characterisation of electrodeposited Ni–Cu/Cu multilayers. J. Appl. Electrochem. 34(8), 841–848 (2004) CrossRefGoogle Scholar
  17. 17.
    Nabiyouni, G., Schwarzacher, W.: Growth, characterization and magnetoresistive study of electrodeposited Ni/Cu and Co–Ni/Cu multilayers. J. Cryst. Growth 275(1–2), 1259–1262 (2005) ADSCrossRefGoogle Scholar
  18. 18.
    Alper, M., Attenborough, K., Baryshev, V., Hart, R., Lashmore, D.S.: Giant magnetoresistance in electrodeposited Co–Ni–Cu/Cu superlattices. J. Appl. Phys. 75(10), 6543–6545 (1994) ADSCrossRefGoogle Scholar
  19. 19.
    Jiles, D.: Introduction to Magnetism and Magnetic Materials. Chapman & Hall, London (1996) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Physics Department, Science and Literature FacultyBalikesir UniversityBalikesirTurkey
  2. 2.Physics Department, Science and Literature FacultyUludag UniversityGorukleTurkey

Personalised recommendations