Journal of Superconductivity and Novel Magnetism

, Volume 26, Issue 4, pp 1199–1203 | Cite as

Magnetic Pair Breaking in Superconducting SrPd2Ge2 Investigated by Scanning Tunnelling Spectroscopy

  • T. Samuely
  • P. Szabó
  • J. G. Rodrigo
  • N. H. Sung
  • B. K. Cho
  • P. Samuely
Original Paper


SrPd2Ge2 has been structurally identical with the 122-type iron pnictide compounds with iron completely replaced by Pd and pnictogen replaced by Ge yielding the superconducting transition below 3 K. Our previous works showed that in contrast to iron pnictides this system is electronically fully three-dimensional and revealed conventional superconductivity, even of type I. Here, by means of sub-Kelvin STM spectroscopy, we show that the dirty limit occurs in the sample driving it to type-II superconductivity. STM also proves that in magnetic field the sample undergoes the phase transition to the Abrikosov vortex-lattice state. The de Gennes–Maki theory of gapless superconductivity for dirty superconductors is successfully applied to model the tunnelling spectra of the superconducting density of states in magnetic field. We show that this theory is applicable in a wide range of magnetic fields starting from 60 % of the upper critical field H c2.


Superconducting pnictides SrPd2Ge2 Type I and type II superconductors Scanning tunnelling spectroscopy Vortex imaging Pair breaking 



This work has been supported by the following projects: CFNT MVEP—the Centre of Excellence of the Slovak Academy of Sciences, FP7 MNT—ERA.Net II. ESO, the EU ERDF (European Union Regional Development Fund) Grant No. ITMS26220120005, VEGA 2/0148/10 and the project 2011-0028736 of the Ministry of Education, Science, and Technology of Korea. The liquid nitrogen for the experiment has been sponsored by the US Steel Kosice, s.r.o.


  1. 1.
    Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: J. Am. Chem. Soc. 30, 3296 (2008) CrossRefGoogle Scholar
  2. 2.
    Ivanovskii, A.L.: Phys. Usp. 51, 1229 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    Rotter, M., Tegel, M., Johrendt, D., Schellenberg, I., Hermes, W., Pöttgen, R.: Phys. Rev. B 78, R020503 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    Jeitschko, W., Glaum, R., Boonk, L.: J. Solid State Chem. 69, 93 (1987) ADSCrossRefGoogle Scholar
  5. 5.
    Berry, N., Capan, C., Seyfarth, G., Bianchi, A.D., Ziller, J., Fisk, Z.: Phys. Rev. B 79, 180502 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    Fujii, H., Sato, A.: Phys. Rev. B 79, 224522 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    Shein, I.R., Ivanovskii, A.L.: Physica B, Condens. Matter 405, 3213 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    Bauer, E.D., Ronning, F., Scott, B.L., Thomson, J.D.: Phys. Rev. B 78, 172504 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    Kim, T.K., Yaresko, A.N., Zabolotnyy, V.B., Kordyuk, A.A., Evtushinsky, D.V., Sung, N.H., Cho, B.K., Samuely, T., Szabo, P., Rodrigo, J.G., Park, J.T., Inosov, D.S., Samuely, P., Bueuchner, B., Borisenko, S.V.: Phys. Rev. B 85, 014520 (2012) ADSCrossRefGoogle Scholar
  10. 10.
    Mazin, I.I., Singh, D.J., Johannes, M.D., Du, M.H.: Phys. Rev. Lett. 101, 057003 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    Sung, N.H., Rhyee, J.S., Cho, B.K.: Phys. Rev. B 83, 094511 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    Tinkham, M.: Introduction to Superconductivity, 2nd edn. McGraw-Hill, New York (1996) Google Scholar
  13. 13.
    Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1996) Google Scholar
  14. 14.
    Samuely, T., Szabó, P., Rodrigo, J.G., Samuely, P.: Physica C (2012). doi: 10.1016/j.physc.2011.12.039 Google Scholar
  15. 15.
    Samuely, T., et al.: (unpublished) Google Scholar
  16. 16.
    de Gennes, P.G.: Superconductivity of Metals and Alloys. W.A. Benjamin, New York (1966) MATHGoogle Scholar
  17. 17.
    Maki, K.: In: Parks, R.D. (ed.) Superconductivity, p. 1035. Marcel Dekker, New York (1969) Google Scholar
  18. 18.
    Szabó, P., Samuely, P., Jansen, A.G.M., Marcus, J., Wyder, P.: Phys. Rev. B 62, 3502 (2000) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • T. Samuely
    • 1
  • P. Szabó
    • 1
  • J. G. Rodrigo
    • 2
  • N. H. Sung
    • 3
  • B. K. Cho
    • 3
    • 4
  • P. Samuely
    • 1
  1. 1.Centre of Low Temperature Physics @ Institute of Experimental PhysicsSlovak Academy of Sciences & Faculty of Science, P.J. Šafárik UniversityKošiceSlovakia
  2. 2.Laboratorio de Bajas Temperaturas, Departamento de Fisíca de la Materia Condensada, Instituto Nicolas CabreraUnivesidad Autonoma de MadridMadridSpain
  3. 3.School of Materials Science and EngineeringGwangju Institute of Science and TechnologyGwangjuKorea
  4. 4.Department of Nanobio Materials and ElectronicsGwangju Institute of Science and TechnologyGwangjuKorea

Personalised recommendations