First Principles Study of Electronic and Magnetic Properties of DyNiPb and YNiPb Compounds Under Hydrostatic Pressure

Original Paper


Density functional theory calculations have been performed to study the electronic and magnetic properties of DyNiPb and YNiPb compounds. The total energy calculations indicate that at zero pressure the ferromagnetic and nonmagnetic phases are the most stable phases of the DyNiPb and YNiPb compounds respectively. The Pb atom has a negligible contribution to the magnetic properties of DyNiPb compared to the Dy and Ni atoms. The effect of hydrostatic pressure on the magnetic moment of these compounds is also studied. The calculated results show that the YNiPb compound has zero magnetic moment over the whole pressure range considered (p<20 GPa), while in the DyNiPb compound the total and local magnetic moments at the Dy and Ni atomic sites increase with increasing pressure.

Furthermore, I have investigated the electric field gradient (EFG) at different atomic sites of these compounds. The contribution of different orbitals to the EFG shows that the strongest anisotropy in the charge distribution is due to the electrons in the p orbitals. The variation of EFG at different atomic positions of the DyNiPb and YNiPb compounds with pressure is not linear and increases with pressure.


DyNiPb YNiPb FP-LAPW Density functional theory Magnetic moment Electric field gradient 


  1. 1.
    Gulay, L.D., Stepien-Damm, J., Wolcyrz, M.: J. Alloys Compd. 315, 169–173 (2001) CrossRefGoogle Scholar
  2. 2.
    Arbouche, O., Azzaz, Y., Bendaoud, H., Belgoumene, B., Driz, M., Abid, H.: Physica B 407, 896–900 (2012) ADSCrossRefGoogle Scholar
  3. 3.
    Gulay, L.D., Hiebl, K.: J. Alloys Compd. 339, 46–53 (2002) CrossRefGoogle Scholar
  4. 4.
    Gulay, L.D.: J. Alloys Compd. 392, 165–172 (2005) CrossRefGoogle Scholar
  5. 5.
    Blaha, P., Schwarz, K., Luitz, J.: WIEN97: Full Potential Linearized Augmented Plane Wave Package for Calculating Crystal Properties. Karlheinz Schwarz, Technische Universität Wien, Vienna (1999). ISBN 3950103104 Google Scholar
  6. 6.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  7. 7.
    Al-Douri, Y., Abid, H., Zaoui, A., Aourag, H.: Physica B 301, 295 (2001) ADSCrossRefGoogle Scholar
  8. 8.
    Al-Douri, Y., Abid, H., Zaoui, A., Aourag, H.: Physica B 322, 179 (2002) ADSCrossRefGoogle Scholar
  9. 9.
    Al-Douri, Y., Abid, H., Zaoui, A., Aourag, H.: Physica B 305, 186 (2001) ADSCrossRefGoogle Scholar
  10. 10.
    Wichert, Th., Recknagel, E.: In: Gonser, U. (ed.) Topics in Current Physics, vol. 40. Springer, Berlin (1986) Google Scholar
  11. 11.
    Klas, T., Voigt, J., Keppner, W., Wesche, R., Schatz, G.: Phys. Rev. Lett. 57, 1068 (1986) ADSCrossRefGoogle Scholar
  12. 12.
    Blaha, P., Schwarz, K., Dederichs, P.H.: Phys. Rev. B 37, 2792 (1988) ADSCrossRefGoogle Scholar
  13. 13.
    Blaha, P., Schwarz, K., Herzig, P.: Phys. Rev. Lett. 54, 1192 (1985) ADSCrossRefGoogle Scholar
  14. 14.
    Divis, M., Schwarz, K., Blaha, P., Hilscher, G., Michor, H., Khmelevskyi, S.: Phys. Rev. B 62, 6774 (2000) ADSCrossRefGoogle Scholar
  15. 15.
    Nourbakhsh, Z.: Physica B 404, 1271–1278 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    da Jornada, J.A.H., Zawislak, F.C.: Phys. Rev. B 20, 2617 (1979) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceUniversity of IsfahanIsfahanIran

Personalised recommendations