Skip to main content
Log in

Investigation of Surface Properties of Magnetorheological Elastomers by Atomic Force Microscopy

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Magnetorheological elastomers generally consist of a natural or synthetic rubber matrix interspersed with micron-sized ferromagnetic particles. The magneto-elastic properties of such a composite are not merely a sum of the elasticity of the polymer and the stiffness and magnetic properties of the filler, but also the result of a complex synergy of several effects, relevant at different length scales and detectable by different techniques. In our present work we investigate the microstructures, the surface magnetic properties, and the elastic properties of new isotropic and anisotropic magnetorheological elastomers prepared using silicone rubber and soft magnetic carbonyl iron microspheres. Similar samples were previously investigated by means of small-angle neutron scattering, which proved to be a useful method in the investigation of their microscopic properties. We combined the data from the atomic force microscopy measurements with those from small-angle neutron scattering to better understand the complicated behaviour of the studied materials. The measurements were performed by atomic force microscopy in the following modes: standard imaging non-contact atomic force microscopy, magnetic force microscopy, and nanoindentation. A comparative study of samples with different particle concentrations and strength of magnetic field applied during the polymerization process is developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jolly, M.R., Carlson, J.D., Munoz, B.C.: A model of the behaviour of magnetorheological materials. Smart Mater. Struct. 5, 607–614 (1996)

    Article  ADS  Google Scholar 

  2. Ginder, J.M., Nichols, M.E., Elie, L.D., Tardiff, J.L.: Magnetorheological elastomers: properties and applications. Proc. SPIE 3675, 131–138 (1999)

    Article  ADS  Google Scholar 

  3. Carlson, J.D., Jolly, M.R.: MR fluid, foam and elastomer devices. Mechatronics 10, 555–569 (2000)

    Article  Google Scholar 

  4. Bica, I.: Advances in magnetorheological suspension: production and properties. J. Ind. Eng. Chem. 12(4), 501–515 (2006)

    Google Scholar 

  5. Bica, I.: Giant resistances based on magnetorheological suspensions. J. Ind. Eng. Chem. 13(2), 299–304 (2007)

    Google Scholar 

  6. Bica, I.: Influence of the transverse magnetic field intensity upon the electric resistance of the magnetorheological elastomer containing graphite microparticles. Mater. Lett. 63(26), 2230–2232 (2009)

    Article  Google Scholar 

  7. Fan, Y., Gong, X., Xuan, S., Zhang, W., Zheng, J., Jiang, W.: Interfacial friction damping properties in magnetorheological elastomers. Smart Mater. Struct. 20 (2011). doi:10.1088/0964-1726/20/3/035007

  8. Ruddy, C., Ahearne, E., Byrne, G.: A review of magnetorheological elastomers: properties and applications. Advanced Manufacturing Science (AMS) Research. http://www.ucd.ie/mecheng/ams/news_items/Cillian%20Ruddy.pdf.Accessed 20 (2012)

  9. Bica, I., Liu, Y.D., Choi, H.J.: Magnetic field intensity effect on plane electric capacitor characteristics and viscoelasticity of magnetorheological elastomer. Colloid Polym. Sci. (2012). doi:10.1007/s00396-012-2627-9

    Google Scholar 

  10. Balasoiu, M., Craus, M.L., Anitas, E.M., Bica, I., Plestil, J., Kuklin, A.I.: Microstructure of stomaflex based magnetic elastomers. Phys. Solid State 52(5), 917–921 (2010)

    Article  ADS  Google Scholar 

  11. Bica, I.: Magnetoresistor sensor with magnetorheological elastomers. J. Ind. Eng. Chem. 17, 83–89 (2011)

    Article  Google Scholar 

  12. Bica, I.: The influence of hydrostatic pressure and transverse magnetic field on the electric conductivity of the magnetorheological elastomers. J. Ind. Eng. Chem. 18, 483–486 (2012)

    Article  Google Scholar 

  13. Fuchs, A., Zhang, Q., Elkins, J., Gordaninejad, F., Evrensel, C.: Development and characterization of magnetorheological elastomers. J. Appl. Polym. Sci. 105, 2497–2508 (2007)

    Article  Google Scholar 

  14. Fan, Y., Gong, X., Xuan, S., Zhang, W., Zheng, J., Jiang, W.: Interfacial friction damping properties in magnetorheological elastomers. Smart Mater. Struct. 20, 035007 (2011). doi:10.1088/0964-1726/20/3/035007

    Article  ADS  Google Scholar 

  15. Moeller, G., Domnich, V.: AFM nanoindentation of polymers. Microsc. Microanal. 13(2), 186–187 (2007). doi:10.1017/S1431927607073850

    Article  Google Scholar 

  16. Hengsberger, S., Kulik, A., Zysset, Ph.: A combined atomic force microscopy and nanoindentation technique to investigate the elastic properties of bone structural units. Eur. Cells Mater. 1, 12–17 (2001)

    Google Scholar 

  17. Pauschitz, A., Schalko, J., Koch, T., Eisenmenger-Sittner, C., Kvasnica, S., Roy, M.: Nanoindentation and AFM studies of PECVD DLC and reactively sputtered Ti containing carbon films. Bull. Mater. Sci. 26(6), 585–591 (2003)

    Article  Google Scholar 

  18. Kim, Y., Yang, Y.I., Choi, I., Yi, J.: Dependence of approaching velocity on the force-distance curve in AFM analysis. Korean J. Chem. Eng. 27(1), 324–327 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Joint Institute for Nuclear Research (JINR)—Romania Cooperation, scientific projects No. 146,151/15.03.2011 item 26 and No. 82/06.02.2012 item 33, and JINR Scientific Topic No. 04-4-1069-2009/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Iacobescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iacobescu, G.E., Balasoiu, M. & Bica, I. Investigation of Surface Properties of Magnetorheological Elastomers by Atomic Force Microscopy. J Supercond Nov Magn 26, 785–792 (2013). https://doi.org/10.1007/s10948-012-1903-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-012-1903-8

Keywords

Navigation