Structural, Optical and Magnetic Properties of Multiferroic GdMnO3 Nanoparticles

  • P. Negi
  • G. Dixit
  • H. M. Agrawal
  • R. C. Srivastava
Original Paper


The structural, optical, and magnetic properties of multiferroic GdMnO3 nanoparticles synthesized by the modified sol–gel route have been investigated. Raman spectroscopy and X-ray diffraction along with Rietveld refinement confirm the pure phase of the GdMnO3 nanoparticles having an orthorhombic perovskite (space group: Pnma) type structure. The morphology was examined by scanning electron microscopy. Energy dispersive spectroscopy confirms the stoichiometry of the composition. The room temperature UV-visible absorption spectrum using Tauc’s relation gives an optical band gap of ∼2.9 eV. A magnetization study of the GdMnO3 nanoparticles was performed over a temperature range of 2–300 K at an applied field of 0.05 T by using a vibrating sample magnetometer. An effective magnetic moment (μ eff) of ∼9.2μ B was obtained. The system is paramagnetic at room temperature and shows a ferromagnetic-like nature at 2 K as the applied magnetic field aligns the Gd moments and the contribution of the net moment of Gd spins is larger than that of the anti-ferromagnetically canted state of the Mn spins.


Multiferroic X-ray diffraction Rietveld refinement Raman spectroscopy Vibrating sample magnetometer 



The authors would like to acknowledge UGC-DAE-CSR, Indore centre, India, for providing the XRD, Raman, and VSM facilities. P. Negi is also thankful to Dr. Alok Banerjee, Dr. V.G. Sathe, and Dr. Mukul Gupta for their valuable suggestions.


  1. 1.
    Feyerherm, R., Dudzik, E., Wolter, A.U.B., Valencia, S., Prokhnenko, O., Maljuk, A., Landsgesell, S., Aliouane, N., Bouchenoire, L., Brown, S., Argyriou, D.N.: Magnetic-field induced effects on the electric polarization in RMnO3 (R=Dy,Gd). Phys. Rev. B 79, 134426 (2009) ADSCrossRefGoogle Scholar
  2. 2.
    Pimenov, A., Mukhin, A.A., Ivanov, V.Y., Travkin, V.D., Balbashov, A.M., Loidl, A.: Possible evidence for electromagnons in multiferroic manganites. Nat. Phys. 2, 97–100 (2006) CrossRefGoogle Scholar
  3. 3.
    Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., Tokura, Y.: Magnetic control of ferroelectric polarization. Nature (London) 426, 55–58 (2003) ADSCrossRefGoogle Scholar
  4. 4.
    Cheong, S.W., Mostovoy, M.: Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    Kimura, T., Ishihara, S., Shintani, H., Arima, T., Takahashi, K.T., Ishizaka, K., Tokura, Y.: Distorted perovskite with eg1 configuration as a frustrated spin system. Phys. Rev. B 68, 060403 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    Takahashi, J.I., Kohn, K., Hanamura, E.: Luminescence spectrum from hexagonal YMnO3. J. Lumin. 100, 141–145 (2002) CrossRefGoogle Scholar
  7. 7.
    Choi, W.S., Kim, D.G., Seo, S.A., Moon, S.J., Lee, D., Lee, J.H., Lee, H.S., Cho, D.Y., Lee, Y.S., Murugavel, P., Yu, J., Noh, T.W.: Electronic structures of hexagonal RMnO3 (R=Gd, Tb, Dy, and Ho) thin films: optical spectroscopy and first-principles calculations. Phys. Rev. B 77, 045137 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    Wang, Y.G., Xu, G., Ren, Z.H., Wei, X., Weng, W.J., Du, P.Y., Shen, G., Han, G.R.: Mineralizer-assisted hydrothermal synthesis and characterization of BiFeO3 nanoparticles. J. Am. Ceram. Soc. 90, 2615–2617 (2007) CrossRefGoogle Scholar
  9. 9.
    Singh, J.P., Srivastava, R.C., Agrawal, H.M., Kushwaha, R.P.S., Chand, P., Kumar, R.: EPR study of nanostructured zinc ferrite. Int. J. Nanosci. 7, 21–27 (2008) CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Ferreira, W.S., Moreira, J.A., Almeida, A., Chaves, M.R., Araújo, J.P., Oliveira, J.B., Silva, J.M.M.D., Sa, M.A., Mendonca, T.M., Carvalho, P.S., Kreisel, J., Ribeiro, J.L., Vieira, L.G., Tavares, P.B., Mendonca, S.: Spin-phonon coupling and magnetoelectric properties: EuMnO3 versus GdMnO3. Phys. Rev. B 79, 054303 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    Morrish, A.H., Zhou, X.Z.: Magnetic nanometer systems and Mossbauer spectroscopy. In: Hadjipanayis, G.C., Prinz, G.A. (eds.) Science and Technology of Nanostructured Magnetic Materials, pp. 511–532. Plenum, New York (1991) Google Scholar
  13. 13.
    Banday, J.A., Mir, F.A., Farooq, S., Qurishi, M.A., Koul, S., Razdan, T.K.: Structural, thermal and optical studies of oxypeucedanin hydrate monoacetate micro-crystals from Prangos pabularia. Am. J. Anal. Chem. 3, 204–209 (2012) CrossRefGoogle Scholar
  14. 14.
    Singh, J.P., Srivastava, R.C., Agarwal, H.M.: Optical behaviour of zinc ferrite nanoparticles. AIP Conf. Proc. 1276, 137–143 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    Wang, X.L., Li, D., Cui, T.Y., Kharel, P., Liuy, W., Zhang, Z.D.: Magnetic and optical properties of multiferroic GdMnO3 nanoparticles. J. Appl. Phys. 107, 09B510 (2010) CrossRefGoogle Scholar
  16. 16.
    Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1976) Google Scholar
  17. 17.
    Chen, Y., Yuan, H., Li, G., Tian, G., Feng, S.: Crystal growth and magnetic property of orthorhombic RMnO3 (R=SmHo) perovskites by mild hydrothermal synthesis. J. Cryst. Growth 305, 242–248 (2007) ADSCrossRefGoogle Scholar
  18. 18.
    Hemberger, J., Lobina, S., Nidda, H.A.K.V., Tristan, N., Ivanov, V.Y., Mukhin, A.A., Balbashov, A.M., Loidl, A.: Complex interplay of 3d and 4f magnetism in La1−xGdxMnO3. Phys. Rev. B 70, 024414 (2004) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • P. Negi
    • 1
  • G. Dixit
    • 1
  • H. M. Agrawal
    • 1
  • R. C. Srivastava
    • 1
  1. 1.Department of PhysicsG.B. Pant University of Ag. & TechnologyPantnagarIndia

Personalised recommendations