Dielectric and Superconducting Photonic Crystals

  • Arafa H. Aly
  • Walied Sabra
  • Hussein A. Elsayed
Original Paper


We present the transmittance of two types of one-dimensional periodic structures. The first type of structure consists of alternating layers of a dielectric material. The second type of structure consists of alternating layers of a dielectric material and a superconductor whose dielectric properties are described by the two-fluid model. The variance of the intensity and the bandwidth of the transmittance are strongly dependent on the thicknesses, temperature, and frequencies. We have compared the transmittance spectra and present some details about the two types of structure. In the first type, we will make a comparison between the optical properties of the high temperature superconducting photonic crystal (HTScPC) by using the YBa2Cu3O7 as a superconductor layer with SrTiO3 as a dielectric layer. The second type consists of the dielectric photonic crystals (DPCs) and Al2O3 or MgO with SrTiO3 within the ultra-violet region. The comparison obtained according to the difference of the thickness of SrTiO3 and the variance of the number of periods. The common result is changed in the number of PBGs within the UV range.


Transmittance HTScPC UV 


  1. 1.
    Lyubchanskii, I.L., Dadoenkova, N.N., Zabolotin, A.E., Lee, Y.P., Rasing, T.: A one-dimensional photonic crystal with a superconducting defect layer. J. Opt. A, Pure Appl. Opt. 11, 114014 (2009) ADSCrossRefGoogle Scholar
  2. 2.
    Aly, A.H.: The transmittance of two types of one-dimensional periodic structures. Mater. Chem. Phys. 115, 391–394 (2009) CrossRefGoogle Scholar
  3. 3.
    Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Photonic Crystals, p. 41. Princeton University Press, Princeton (1995) MATHGoogle Scholar
  4. 4.
    Soukoulis, C.M.: Photonic Band Gap Materials. Kluwer, Dordrecht (1996) CrossRefGoogle Scholar
  5. 5.
    Raymond Ooi, C.H., Au Yeung, T.C., Kam, C.H., Lim, T.K.: Phys. Rev. B 61, 5920 (2000) ADSCrossRefGoogle Scholar
  6. 6.
    Wu, C.-J., Chen, M.-S., Yang, T.-J.: Physica C 432, 133 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    Berman, O.L., Lozovik, Y.E., Eiderman, S.L., Coalson, R.D.: Phys. Rev. B 74, 092505 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    Wu, C.-J., Yang, T.-J.: PIERS Online 4, 801 (2008) CrossRefGoogle Scholar
  9. 9.
    Aly, A.H., Hsu, H.-T., Yang, T.-J., Wu, C.-J., Hwangbo, C.K.: J. Appl. Phys. 105, 083917 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    Lin, W.-H., Wu, C.-J., Yang, T.-J., Chang, S.-J.: Terahertz multichanneled filter in a superconducting photonic crystal. Opt. Express 18(26), 27155–27166 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    Yeh, P.: Optical Waves in Layered Media. Wiley, New York (1988). Chap. 5 Google Scholar
  12. 12.
    Aly, A.H.: Metallic and superconducting photonic crystal. J. Supercond. Nov. Magn. 21, 421–425 (2008) CrossRefGoogle Scholar
  13. 13.
    Chena, M.-S., Wub, C.-J., Yang, T.-J.: Optical properties of a superconducting annular periodic multilayer structure. Solid State Commun. 149, 1888–1893 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    Wu, C.-J., Chung, Y.-H., Syu, B.-J.: Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal. Prog. Electromagn. Res. 102, 81, 93 (2010) CrossRefGoogle Scholar
  15. 15.
    Lozovik, Yu.E., Éiderman, S.L.: Band structure of superconducting photonic crystals. Phys. Solid State 50(11), 2024–2027 (2008). ISSN 1063-7834. © Pleiades Publishing, Ltd. (2008). Original Russian Text © Yu. E. Lozovik, S.L. Éiderman, published in Fizika Tverdogo Tela 50(11) 1944–1947 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Arafa H. Aly
    • 1
  • Walied Sabra
    • 1
  • Hussein A. Elsayed
    • 1
  1. 1.Department of Physics, Faculty of SciencesBeni-Suef UniversityBeni-SuefEgypt

Personalised recommendations