Advertisement

Optical Properties of Mn-Implanted GaN Nanorods

  • Im Taek Yoon
  • Yoon Shon
  • Young S. Park
  • T. W. Kang
Original Paper

Abstract

We have investigated the optical properties of vertical GaN nanorods with diameters of 150 nm grown on (111) Si substrates by radio-frequency plasma-assisted molecular-beam epitaxy followed by Mn ion implantation and annealing. The GaN nanorods are fully relaxed and have a very good crystal quality characterized by extremely strong and narrow photoluminescence excitonic lines near 3.47 eV. For GaMnN nanorods, Arrhenius plots of the intensities of the Mn acceptor give a thermal activation energy of Δ=350 meV, indicating that the thermal quenching of the Mn-related PL peak is due to the dissociation of an acceptor-bound hole from the temperature-dependent PL spectra. This suggests that the Mn-bound holes in GaN nanorods exhibit the impurity states predicted by the hydrogen model.

Keywords

Photoluminescence Mn-Implantation Nanorods Semi-conducting III–V materials 

Notes

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (MEST) (No. 2012-0007190) and (No. 2012-0000217) as well as by Leading Foreign Research Institute Recruitment Program through NRF funded by MEST (Grant No. 2012-00109) and QSRC of Dongguk University.

References

  1. 1.
    Ohno, H.: Science 281, 951 (1998) ADSCrossRefGoogle Scholar
  2. 2.
    Munekata, H., Ohno, H., von Molnar, S., Segmuller, A., Chang, L.L., Esaki, L.: Phys. Rev. Lett. 63, 1849 (1989) ADSCrossRefGoogle Scholar
  3. 3.
    Ohno, H., Shen, A., Matsukura, F., Oiwa, A., Endo, A., Katsumoto, S., Iye, Y.: Appl. Phys. Lett. 69, 363 (1996) ADSCrossRefGoogle Scholar
  4. 4.
    Munekata, H., Zaslavsky, A., Fumagalli, P., Ganbino, R.J.: Appl. Phys. Lett. 63, 2929 (1993) ADSCrossRefGoogle Scholar
  5. 5.
    Edmonds, W., Wang, K.Y., Campion, R.P., Neumann, A.C., Foxon, C.T., Gallagher, B.L., Main, P.C.: Appl. Phys. Lett. 81, 3010 (2002) ADSCrossRefGoogle Scholar
  6. 6.
    Edmonds, K.W., Wang, K.Y., Campion, R.P., Neumann, A.C., Farley, N.R.S., Gallagher, B.L., Foxon, C.T.: Appl. Phys. Lett. 81, 4991 (2002) ADSCrossRefGoogle Scholar
  7. 7.
    Ponce, F.A., Bour, D.P.: Nature 386, 251 (1997) CrossRefGoogle Scholar
  8. 8.
    Morkoc, H., Mohammand, S.N.: Science 267, 51 (1995) ADSCrossRefGoogle Scholar
  9. 9.
    Lieber, C.M.: Solid State Commun. 107, 607 (1998) ADSCrossRefGoogle Scholar
  10. 10.
    Nakamura, S., Mukai, T., Senoh, M.: Appl. Phys. Lett. 64, 1687 (1994) ADSCrossRefGoogle Scholar
  11. 11.
    Chen, X., Lee, S.J., Moskovits, M.: Appl. Phys. Lett. 91, 082109 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    Xue, C.S., Liu, W.J., Shi, F., Zhuang, H.Z., Guo, Y.F., Cao, Y.P., Sun, H.B.: Chin. Phys. Lett. 27, 505 (2009) Google Scholar
  13. 13.
    Choi, H.J., Seong, H.K., Chang, J.Y., Lee, K.I., Park, Y.J., Kim, J.J., Lee, S.K., He, R., Kuykendall, T., Yang, P.: Adv. Mater. 17, 1351 (2005) CrossRefGoogle Scholar
  14. 14.
    Xu, C., Chun, J., Lee, H.J., Jeong, Y.H., Han, S.E., Kim, J.J., Kim, D.E.: J. Phys. Chem. C 111, 1180 (2007) CrossRefGoogle Scholar
  15. 15.
    Stamplecoskie, K.G., Ju, L., Farvid, S.S., Radovanovic, P.V.: Nano Lett. 8, 2674 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    Xu, C.K., Chun, J.H., Lee, H.J., Jeong, Y.H., Han, S.E., Kim, J.J., Kim, D.E.: J. Phys. Chem. C 111, 1180 (2007) CrossRefGoogle Scholar
  17. 17.
    Urban, A., Malindretos, J., Seibt, M., Rizzi, A.: Nano Lett. 11, 398 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    Radovanovic, P.V., Stamplecoskie, K.G., Pautler, B.G.: J. Am. Chem. Soc. 129, 10980 (2007) CrossRefGoogle Scholar
  19. 19.
    Park, Y.S., Lee, S.H., Oh, J.E., Park, C.M., Kang, T.W.: J. Cryst. Growth 282, 313 (2005) ADSCrossRefGoogle Scholar
  20. 20.
    Calleja, E., Sánchez-García, M.A., Sánchez, F.J., Calle, F., Naranjo, F.B., Muñoz, E., Jahn, U., Ploog, K.: Phys. Rev. B 62, 16826 (2000) ADSCrossRefGoogle Scholar
  21. 21.
    Yoon, I.T., Kang, T.W., Jeong, M.C., Ham, M.H., Myoung, J.M.: Appl. Phys. Lett. 85, 4878 (2004) ADSCrossRefGoogle Scholar
  22. 22.
    Shon, Y., Kwon, Y.H., Yudashev, S.Y., Leem, J.H., Park, C.S., Fu, D.J., Kim, H.J., Kang, T.W.: Appl. Phys. Lett. 81, 1845 (2002) ADSCrossRefGoogle Scholar
  23. 23.
    Orton, J.W.: Semicond. Sci. Technol. 10, 101 (1995) ADSCrossRefGoogle Scholar
  24. 24.
    Pearton, S.J., Abrnathy, C.R., Overberg, M.E., Thaler, G.T., Norton, D.P., Theodoropoulou, N., Hebard, A.F., Park, Y.D., Ren, F., Kim, J., Boatner, L.A.: J. Appl. Phys. 93, 1 (2003) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Im Taek Yoon
    • 1
  • Yoon Shon
    • 1
  • Young S. Park
    • 2
  • T. W. Kang
    • 1
  1. 1.Quantum Functional Semiconductor Research CenterDongguk UniversitySeoulKorea
  2. 2.Center for Superfunctional MaterialsPohang University of Science and TechnologyPohangKorea

Personalised recommendations