Journal of Superconductivity and Novel Magnetism

, Volume 26, Issue 2, pp 449–453 | Cite as

Magneto-Caloric Effect in Ge0.95Mn0.05 Films

  • Mahmoud Aly Hamad
Original Paper


In this paper, a phenomenological model is used to calculate magneto-caloric properties of Ge0.95Mn0.05 films fabricated with substrate temperatures of 85, 100, and 120 C. Calculations showed that the ferromagnetic Mn5Ge3 phase improves magneto-caloric properties of the Ge0.95Mn0.05 films. It is suggested that Ge0.95Mn0.05 films are suitable candidates as refrigerants near room-temperature region.


Magnetocaloric effect Model Magnetization Magnetic entropy change Heat capacity change Relative cooling power 


  1. 1.
    de Oliveira, N.A., von Ranke, P.J.: Phys. Rep. 489, 89 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    Zeng, H., Zhang, J., Kuang, C., Yue, M.: Direct measurements of magneto-caloric effect of Gd5Si2Ge2 alloys in low magnetic field. J. Supercond. Nov. Magn. 25, 487–490 (2010) CrossRefGoogle Scholar
  3. 3.
    Hamad, M.A.: Detecting giant electrocaloric effect in SrxBa1−xNb2O6 single crystals. Appl. Phys. Lett. 100, 192908 (2012) ADSCrossRefGoogle Scholar
  4. 4.
    Hamad, M.A.: Investigations on electrocaloric properties of [111] oriented 0.955PbZn1/3Nb2/3O3–0.045PbTiO3 single crystals. Phase Transit. (2012). doi: 10.1080/01411594.2012.674527 Google Scholar
  5. 5.
    Hamad, M.A.: Magnetocaloric effect in polycrystalline Gd1−xCaxBaCo2O5.5. Mater. Lett. 82, 181–183 (2012) CrossRefGoogle Scholar
  6. 6.
    Hamad, M.A.: Theoretical work on magnetocaloric effect in ceramic and sol-gel La0.67Ca0.33MnO3. J. Therm. Anal. Calorim. (2012). doi: 10.1007/s10973-012-2505-1 Google Scholar
  7. 7.
    Hamad, M.A.: Theoretical investigations on electrocaloric properties of relaxor ferroelectric 0.9PbMg1/3Nb2/3O3-0.1PbTiO3. J. Comput. Electron. (2012). doi: 10.1007/s10825-012-0414-y Google Scholar
  8. 8.
    Spiesser, A., Slipukhina, I., Dau, M.-T., Arras, E., Le Thanh, V., Michez, L., Pochet, P., Saito, H., Yuasa, S., Jamet, M., Derrien, J.: Phys. Rev. B 84, 165203 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    Tian, Y.F., Deng, J.X., Yan, S.S., Dai, Y.Y., Zhao, M.W., Chen, Y.X., Liu, G.L., Mei, L.M., Liu, Z.Y., Sun, J.R.: J. Appl. Phys. 107, 024514 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    Hamad, M.A.: Prediction of energy loss of Ni0.58Zn0.42Fe2O4 nanocrystalline and Fe3O4 nanowire arrays. Jpn. J. Appl. Phys. 49, 085004 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    Hamad, M.A.: Prediction of thermomagnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3. Phase Transit. 85, 106–112 (2012) CrossRefGoogle Scholar
  12. 12.
    Phan, M.H., Yu, S.C.: J. Magn. Magn. Mater. 308, 325 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    Földeaki, M., Chahine, R., Bose, T.K.: J. Appl. Phys. 77, 3528 (1995) ADSCrossRefGoogle Scholar
  14. 14.
    Ahlers, S., Bougeard, D., Sircar, N., Abstreiter, G., Trampert, A., Opel, M., Gross, R.: Magnetic and structural properties of GeMn films: precipitation of intermetallic nanomagnets. Phys. Rev. B 74, 214411 (2006) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Physics Department, College of ScienceAl-Jouf UniversityAl-Jouf, SkakaSaudi Arabia

Personalised recommendations