Skip to main content
Log in

A Simple Method for Measuring Intrinsic Blocking Temperature in Superparamagnetic Nanomaterials

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Temperature-dependent magnetic flux density (B) data, clearly exhibiting a transition temperature called intrinsic blocking temperature for some metallic samples in zero field cooled-warmed (ZFC-W) curves without employing an external magnetic field, has been obtained by a simple method. The reasons of the increase and decrease in the measured B-field at low temperature in zero magnetic-field were discussed. Co, CoPt3 and Co/Au, CoPt3/Au core-shell nanoparticles, prepared by the reverse-micelle microemulsion method, were used as test materials. The blocking temperature was measured at a cusp of the measured magnetic field, B (produced by the sample), versus the temperature curve during warming up of the sample from a very low temperature (≤15 K) to room temperature. All the samples showed a blocking temperature at 45, 50, 40, and 42 K, respectively, for Co, CoPt3, Co/Au, and CoPt3/Au nanoparticles. A completely intrinsic behavior of the sample’s magnetic moment was revealed by our method since no applied external field was used, yielding a truly spontaneous magnetization behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gubin, S.P., Koksharov, Y.A., Khomutov, G., Yurkov, G.Y.: Magnetic nanoparticles: preparation, structure and properties. Russ. Chem. Rev. 74, 489 (2005)

    Article  ADS  Google Scholar 

  2. Knickelbein, M.B.: Experimental observation of superparamagnetism in manganese clusters. Phys. Rev. Lett. 86(23), 5255–5257 (2001)

    Article  ADS  Google Scholar 

  3. Tofail, S., Rahman, I., Rahman, M.: Patterned nanostructured arrays for high-density magnetic recording. Appl. Organomet. Chem. 15(5), 373–382 (2001)

    Article  Google Scholar 

  4. Li, D.: Preparation and Characterization of Hard Magnetic Nanoparticles (2007)

  5. Wang, Q., Wu, A., Yu, L., Liu, Z., Xu, W., Yang, H.: Nanocomposites of iron–cobalt alloy and magnetite: controllable solvothermal synthesis and their magnetic properties. J. Phys. Chem. C 113(46), 19875–19882 (2009)

    Article  Google Scholar 

  6. Kronmüller, H., Parkin, S.S.P.: Handbook of Magnetism and Advanced Magnetic Materials. Wiley Online Library, vol. 2. Wiley-Blackwell, New York (2007)

    Book  Google Scholar 

  7. Knobel, M., Nunes, W., Winnischofer, H., Rocha, T., Socolovsky, L., Mayorga, C., Zanchet, D.: Effects of magnetic interparticle coupling on the blocking temperature of ferromagnetic nanoparticle arrays. J. Non-Cryst. Solids 353(8–10), 743–747 (2007)

    Article  ADS  Google Scholar 

  8. Zuo, F., Su, X., Wu, K.: Magnetic properties of the premartensitic transition in Ni{2} MnGa alloys. Phys. Rev. B, Condens. Matter Mater. Phys. 58(17), 11127 (1998)

    Article  ADS  Google Scholar 

  9. Hadjipanayis, G.C.: Magnetic Storage Systems Beyond 2000 vol. 41. Springer, Berlin (2001)

    Google Scholar 

  10. Yin, S., Yuan, S., Tian, Z., Liu, L., Wang, C., Zheng, X., Duan, H., Huo, S.: Effect of particle size on the exchange bias of Fe-doped CuO nanoparticles. J. Appl. Phys. 107(4), 043909-043909–043909-043904 (2010)

    Article  Google Scholar 

  11. Lin, X., Sorensen, C., Klabunde, K., Hadjipanayis, G.: Temperature dependence of morphology and magnetic properties of cobalt nanoparticles prepared by an inverse micelle technique. Langmuir 14(25), 7140–7146 (1998)

    Article  Google Scholar 

  12. Zhang, X., Wen, G., Xiao, G., Sun, S.: Magnetic relaxation of diluted and self-assembled cobalt nanocrystals. J. Magn. Magn. Mater. 261(1–2), 21–28 (2003)

    Article  ADS  Google Scholar 

  13. Atwater, J.E., Akse, J.R., Holtsnider, J.T.: Cobalt–poly(amido amine)superparamagnetic nanocomposites. Mater. Lett. 62(17–18), 3131–3134 (2008)

    Article  Google Scholar 

  14. Cullity, B.D., Graham, C.D.: Introduction to Magnetic Materials. Wiley-IEEE Press, New York (2009)

    Google Scholar 

  15. Fruchart, O., Klaua, M., Barthel, J., Kirschner, J.: Self-organized growth of nanosized vertical magnetic Co pillars on Au (111). Phys. Rev. Lett. 83(14), 2769–2772 (1999)

    Article  ADS  Google Scholar 

  16. Duke, C.B., Plummer, E.W.: Frontiers in Surface and Interface Science. North-Holland, Amsterdam (2002)

    Google Scholar 

  17. Bao, Y., Calderon, H., Krishnan, K.M.: Synthesis and characterization of magnetic-optical Co–Au core–shell nanoparticles. J. Phys. Chem. C 111(5), 1941–1944 (2007)

    Article  Google Scholar 

  18. Liu, J.P.: Nanoscale Magnetic Materials and Applications. Springer, Berlin (2009)

    Book  Google Scholar 

  19. Wang, H.: A study of the structural, microstructural and magnetic properties of iron–platinum and cobalt–platinum type nanoparticles. University of Delaware (2007)

  20. Schmid, G.: Nanoparticles: from Theory to Application. Wiley-VCH, New York (2006)

    Google Scholar 

  21. Pellegrino, T., Fiore, A., Carlino, E., Giannini, C., Cozzoli, P.D., Ciccarella, G., Respaud, M., Palmirotta, L., Cingolani, R., Manna, L.: Heterodimers based on CoPt3–Au nanocrystals with tunable domain size. J. Am. Chem. Soc. 128(20), 6690–6698 (2006)

    Article  Google Scholar 

  22. Carpenter, E.E.: Synthesis of magnetic nanoparticles using reverse micelles. University of New Orleans (1999)

  23. Papaefthymiou, G.C., Devlin, E., Simopoulos, A., Yi, D.K., Riduan, S.N., Lee, S.S., Ying, J.Y.: Interparticle interactions in magnetic core/shell nanoarchitectures. Phys. Rev. B, Condens. Matter Mater. Phys. 80(2), 024406 (2009)

    Article  ADS  Google Scholar 

  24. Lin, X.M., Samia, A.: Synthesis, assembly and physical properties of magnetic nanoparticles. J. Magn. Magn. Mater. 305(1), 100–109 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Institute of Bioscience for taking TEM images and we would like to thank Institute of Advanced Technology (ITMA) to provide the research environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghazaleh Bahmanrokh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahmanrokh, G., Hashim, M., Ismail, I. et al. A Simple Method for Measuring Intrinsic Blocking Temperature in Superparamagnetic Nanomaterials. J Supercond Nov Magn 26, 407–414 (2013). https://doi.org/10.1007/s10948-012-1742-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-012-1742-7

Keywords

Navigation