Advertisement

Effect of Sintering Temperature on the Glassy Precursor Synthesis of Superconducting Bi1.6Pb0.4Sr2Cu4Ca3O12+δ

  • T. Kannan
  • P. Predeep
Original Paper
  • 98 Downloads

Abstract

Glassy route synthesis provides homogeneous and dense products of bismuth perovskite superconductors compared with the conventional solid-state sintering technique. Accordingly an attempt has been made here to synthesize Bi1.6Pb0.4Sr2Cu n Ca n−1O w , where n=4 through this route. Instead of varying Bi and Sr, the amount of Ca and Cu has been increased at their sites, in order to improve the superconducting phase assemblage and reduce the impurity. The activation energy for crystallization is evaluated and is found to be equal to 215 kJ/mol. The melt temperature is selected in such a way to reduce the evaporation of Bi and Pb. Analysis of the compositions revealed that the relative amount of Bi increased at the cost of Ca, which has shown a tendency to decrease. It is seen that the relative increase of bismuth in the quenched sample helped in reducing the processing temperature for the formation of superconducting phases. 540 cm−1 observed in the Raman spectrum of bismuth cuprates has been assigned to the modulated non-superconducting grain through this study.

Keywords

PBSCCO Perovskites Melt quenching Raman spectra 

Notes

Acknowledgements

We sincerely thank the Scientists and Technicians at Advanced Material Characterization Division VSCC, Trivandrum and UGC-DAE, CSR, Indore, for extending their help to carry out the preparation and characterization of the above sample.

References

  1. 1.
    Nilson, A., Gruner, W., Acker, J., Wetzig, K.: J. Non-Cryst. Solids 354, 845 (2008) CrossRefADSGoogle Scholar
  2. 2.
    Wong-Ng, W., Freinman, S.W.: J. Appl. Supercond. 2, 163 (1994) CrossRefGoogle Scholar
  3. 3.
    Chen, Y.L., Stevens, R.: J. Am. Ceram. Soc. 75, 1142, 1150, 1160 (1992) CrossRefGoogle Scholar
  4. 4.
    Badicca, P., Addica, G.: J. Optoelectron. Adv. Mater. 5(4), 1030 (2003) Google Scholar
  5. 5.
    Romanov, E., Blinova, Yu.V., Sudareva, S.V., Krinitsina, T.P., Akiomov, I.I.: Phys. Met. Mettallurgy 101(1), 28 (2006) Google Scholar
  6. 6.
    Wada Suzuki, N., Maeda, A., Uchida, S., Uchinokura, K., Tanaka, S.: Jpn. J. Appl. Phys. 27, 1031 (1988) CrossRefADSGoogle Scholar
  7. 7.
    Kocabas, K., Bilgili, O., Yasar, N.: J. Supercond. Nov. Magn. 22, 646 (2009) Google Scholar
  8. 8.
    Sun, Y.-K., Oh, I.-H., Lee, W.Y.: Korean J. Chem. Eng. 14(1), 62 (1997) CrossRefGoogle Scholar
  9. 9.
    Carvalho, C.L., Guedes, I.: Physica C 390, 242 (2003) CrossRefADSGoogle Scholar
  10. 10.
    Denisov, V.N., Marvin, B.N., Podobedov, V.B., Aleksandrov, I.V., Bykov, A.B., Gontcharov, A.F., Melnikov, O.K., Ronanda, N.J.: Solid State Commun. 70, 885 (1989) CrossRefADSGoogle Scholar
  11. 11.
    Cardona, M., Thomsen, C., Liu, R., von Schnering, H.G., Hartweg, H.M., Yan, Y.F., Zhao, Z.X.: Solid State Commun. 66, 1225 (1987) CrossRefGoogle Scholar
  12. 12.
    Boekholt, M., Erle, A., Splittgerber-Huennekes, P.C., Guentheoroat, G.: Solid State Commun. 74, 1107 (1990) CrossRefADSGoogle Scholar
  13. 13.
    Boekholt, M., Guentheroat, G.: Physica C 165, 1231 (1990) CrossRefGoogle Scholar
  14. 14.
    Thomas, P.C., Kumar, M., Nair, V.U.: J. Mater. Sci. 32, 2174 (1997) CrossRefGoogle Scholar
  15. 15.
    Sapriel, J., Schnek, J., Scott, J.F., Toledano, J.C., Pierre, L., Chaignon, J., Dagvet, C., Chaminde, J.P., Boyer, H.: Phys. Rev. B 43, 6259 (1991) CrossRefADSGoogle Scholar
  16. 16.
    Holiastou, M., Poulakis, N., Palles, D., Liarokapis, E., Niarchos, D., Frey, U., Adrian, H.: Physica C 282, 583 (1997) CrossRefADSGoogle Scholar
  17. 17.
    Thomsen, C., Kaczmarczyk, G.: Vibrational Raman Spectroscopy of High Temperature Superconductors, pp. 10–11. Willey, Chichester (2002) Google Scholar
  18. 18.
    Balci, Y., Cylan, M., Yakinici, M.E.: Mater. Sci. Eng. B, Solid-State Mater. Adv. Technol. 86, 84 (2001) Google Scholar
  19. 19.
    Koyama, S., Endo, U., Kawai, T.: Jpn. J. Appl. Phys. 27, L186 (1998) Google Scholar
  20. 20.
    Kakihana, M., Osada, M., Kall, M., Borjesson, L., Mazaki, H., Yasuoka, H., Yashima, M., Yoshimura, M.: Phys. Rev. B 53, 11796 (1996) CrossRefADSGoogle Scholar
  21. 21.
    Nillson, A.: BSCCO superconductors processed by glass ceramic route. Dissertation, 65 (2008) Google Scholar
  22. 22.
    Deya, L., O’Connor, B., van Reissen, A., Makkinon, C., Low, I.M.: Supercond. Sci. Technol. 18, 375–376 (2005) Google Scholar
  23. 23.
    Yamamoto, A., Onoda, M., Takayama-Muromachi, E., Izumi, F.: Phys. Rev. B 42(7), 4237 (1990) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Laboratory for Unconventional Electronics and Photonics, Dept. of PhysicsNational Institute of TechnologyCalicutIndia
  2. 2.Dept of PhysicsJawaharlal Nehru Technological UniversityHyderabadIndia

Personalised recommendations