Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 25, Issue 7, pp 2343–2350 | Cite as

Applicability of the Adaptive Resistivity Method to Describe the Critical State of Complex Superconducting Systems

  • S. Farinon
  • P. Fabbricatore
  • F. Grilli
  • P. A. C. Krüger
Original Paper

Abstract

The adaptive resistivity method is a special algorithm that allows approaching the Bean critical state by an iterative adjustment of the material’s resistivity and can be quite easily implemented in commercially available finite-element codes. Its main advantage is that the critical-state model does not depend on time (or frequency of the applied loads) so that the critical-state description is uniquely determined by the field profiles at the peak value of the applied loads. We proved its validity in the simulation of complex superconducting systems comparing its results either with analytical descriptions, where they exist, or the well-known edge-element model based on direct magnetic field formulation.

Keywords

Critical state Ac losses Finite element ANSYS 

References

  1. 1.
    Bean, C.P.: Rev. Mod. Phys. 36, 31 (1964) ADSCrossRefGoogle Scholar
  2. 2.
    Kim, Y.B., Hempstead, C.F., Strnad, A.R.: Phys. Rev. Lett. 129, 528 (1963) ADSGoogle Scholar
  3. 3.
    Kim, Y.B., Hempstead, C.F., Strnad, A.R.: Phys. Rev. Lett. 9, 306 (1962) ADSCrossRefGoogle Scholar
  4. 4.
    Brandt, E.H.: Phys. Rev. B 49, 9024 (1994) ADSCrossRefGoogle Scholar
  5. 5.
    Mawatari, Y.: Phys. Rev. B 54, 13215 (1996) ADSCrossRefGoogle Scholar
  6. 6.
    Brambilla, R., Grilli, F., Martini, L.: Supercond. Sci. Technol. 20, 16 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    Nguyen, D.N., Ashworth, S.P., Willis, J.O., Sirois, F., Grilli, F.: Supercond. Sci. Technol. 23, 025001 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    Krüger, P.A.C., Grilli, F., Farinon, S.: Physica C 471, 1083 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    Gömöry, F., Vojenciak, M., Pardo, E., Ŝouc, J.: Supercond. Sci. Technol. 22, 034017 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    Farinon, S., Fabbricatore, P., Gomory, F.: Supercond. Sci. Technol. 23, 115004 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    Gu, C., Han, Z.: IEEE Trans. Appl. Supercond. 15(2), 2859 (2005) CrossRefGoogle Scholar
  12. 12.
    Bean, C.P.: J. Appl. Phys. 41, 2482 (1970) ADSCrossRefGoogle Scholar
  13. 13.
    Norris, W.T.: J. Phys. D 3, 489 (1970) ADSCrossRefGoogle Scholar
  14. 14.
    ANSYS Multiphysics, Release 11, ANSYS Inc. Google Scholar
  15. 15.
    Brandt, E.H., Indebom, M.: Phys. Rev. B 48(17), 893 (1993) CrossRefGoogle Scholar
  16. 16.
    Fabbricatore, P., Farinon, S., Innocenti, S.: Phys. Rev. B 61(9), 6413 (2000) ADSCrossRefGoogle Scholar
  17. 17.
    Fabbricatore, P., Farinon, S., Gömöry, F., Innocenti, S.: Supercond. Sci. Technol. 13(9), 1327 (2000) ADSCrossRefGoogle Scholar
  18. 18.
    Fabbricatore, P., Farinon, S., Gömöry, F., Seiler, E.: IEEE Trans. Appl. Supercond. 11(1), 2776 (2001) CrossRefGoogle Scholar
  19. 19.
    Gömöry, F., Ŝouc, J., Fabbricatore, P., Farinon, S., Stryček, F., Kováč, P., Hušek, I.: Physica C 371, 229 (2002) ADSCrossRefGoogle Scholar
  20. 20.
    Gömöry, F., Seiler, E., Ŝouc, J., Kováč, P., Hušek, I., Farinon, S., Fabbricatore, P., Perkins, G., Caplin, A.D., Pardo, E., Sanchez, A., Navau, C.: Supercond. Sci. Technol. 17, S150 (2004) CrossRefGoogle Scholar
  21. 21.
    Mawatari, Y.: Phys. Rev. B 77, 104505 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    Prigozhin, L., Sokolovsky, V.: Supercond. Sci. Technol. 24, 075012 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    Schönborg, N.: J. Appl. Phys. 90, 6 (2001) 2930 CrossRefGoogle Scholar
  24. 24.
    Gömöry, F.: Supercond. Sci. Technol. 10, 523 (1997) CrossRefGoogle Scholar
  25. 25.
    Pardo, E., Gömöry, F., Souc, J., Ceballos, J.M.: arXiv:cond-mat/0510314v1 [cond-mat.supr-con]
  26. 26.
    Gömöry, F., Vojenčiak, M., Pardo, E., Solovyov, M., Šouc, J.: Supercond. Sci. Technol. 23, 034012 (2010) ADSCrossRefGoogle Scholar
  27. 27.
    Gömöry, F., Vojenčiak, M., Pardo, E., Šouc, J.: Supercond. Sci. Technol. 22, 034017 (2009) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • S. Farinon
    • 1
  • P. Fabbricatore
    • 1
  • F. Grilli
    • 2
  • P. A. C. Krüger
    • 2
  1. 1.INFN-Sezione di GenovaGenovaItaly
  2. 2.Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations