Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 25, Issue 7, pp 2315–2321 | Cite as

Pore Structure and Transport Properties in Bulk YBa2Cu3O7−δ Doped with Sb2O3

  • C. K. Piumbini
  • F. Deleprani
  • J. Quispe-Marcatoma
  • A. Takeuchi
  • W. L. Scopel
  • A. Lopez
  • A. Cunha
  • A. Gomes
  • J. L. Gonzalez
Original Paper
  • 131 Downloads

Abstract

In this work we have studied the pore structure and electrical transport properties of superconducting YBa2Cu3O7−y polycrystalline samples doped by the addition of different Sb2O3 concentrations, i.e. resulting in (YBa2Cu3O7−y )1−x (Sb2O3) x . The samples were prepared through the solid-state reaction method. Rietveld analyses of X-ray diffraction data were used to investigate how the lattice parameters are modified by doping. Specific superficial area measurements identified the principal characteristics of the pore structure of the samples and how these properties change with doping. The superconducting properties were studied by using zero field cooling magnetization and transport critical current measurements. The critical temperature of the samples does not depend on the doping level, but their transport critical current density strongly decreases as the Sb2O3 concentration is increased. Our experimental results suggest that for the samples studied here there is not a direct correlation between the modification by doping of both, the pore structure and the transport critical current density.

Keywords

High-TC cuprates YBaCuO Pore structure Transport properties 

References

  1. 1.
    Foltyn, S.R., Civale, L., MacManus-Driscoll, J.L., Jia, Q.X., Maiorov, B., Wang, H., Maley, M.: Nat. Mater. 6, 631–642 (2007) ADSCrossRefGoogle Scholar
  2. 2.
    Chisholm, M.F., Pennycook, S.J.: Nature 351, 47–49 (1991) ADSCrossRefGoogle Scholar
  3. 3.
    Durrell, J.H., Eom, C.B., Gurevich, A., Hellstrom, E.E., Tarantini, C., Yamamoto, A., Larbalestier, D.C.: Rep. Prog. Phys. 74, 124511 (2011) ADSCrossRefGoogle Scholar
  4. 4.
    Hilgenkamp, H., Mannhart, J.: Appl. Phys. Lett. 73, 265–267 (1998) ADSCrossRefGoogle Scholar
  5. 5.
    Khaled, E.: Cryogenics 51, 452 (2011) CrossRefGoogle Scholar
  6. 6.
    Liyanawaduge, N.P., Singh, S.K., Kumar, A., Awana, V.P.S., Kishan, H.: J. Supercond. Nov. Magn. 24, 1599 (2011) CrossRefGoogle Scholar
  7. 7.
    Ozturk, K., Celik, S., Cevik, U., Yanmaz, E.: J. Alloys Compd. 433, 46–52 (2007) CrossRefGoogle Scholar
  8. 8.
    Gupta, S., Yadav, R.S., Lalla, N.P., Verma, G.D., Das, B.: Integr. Ferroelectr. 116, 68 (2010) CrossRefGoogle Scholar
  9. 9.
    Antal, V., Kanuchova, M., Sefcikova, M., Kovac, J., Diko, P., Eisterer, M., Hoerhager, N., Zehetmayer, M., Weber, H.W., Chaud, X.: Supercond. Sci. Technol. 22, 105001 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    Mahmood, A., Park, S.D., Jun, B.H., Youn, J.S., Han, Y.H., Sung, T.H., Kim, C.J.: Physica C 469, 15 (2009) CrossRefGoogle Scholar
  11. 11.
    Paulose, K.V., Koshy, J., Devi, P., Damodaran, A.D.: Appl. Phys. Lett. 59, 1251–1253 (1991) ADSCrossRefGoogle Scholar
  12. 12.
    Jin, S., Tiefel, T.H., Fastnacht, R.A., Kammlott, G.W.: Appl. Phys. Lett. 60, 3307–3309 (1992) ADSCrossRefGoogle Scholar
  13. 13.
    Murugesan, M., Pinto, R., Pai, S.P., Apte, P.R., Sharon, M., Gupta, L.C.: Physica C 234, 339–342 (1994) ADSCrossRefGoogle Scholar
  14. 14.
    Vlakhov, E., Gattef, E., Dimitrev, Y., Staneva, A.: J. Mater. Sci. Lett. 13, 1654–1656 (1994) CrossRefGoogle Scholar
  15. 15.
    Akyüz, G.B., Kocabas, K., Yıldız, A., Özyüzer, L., Çiftçioglu, M.: J. Supercond. Nov. Magn. 24, 2189–2201 (2011) CrossRefGoogle Scholar
  16. 16.
    Fu, W.T., Akerboom, S., Ijdo, D.J.W.: J. Solid State Chem. 180, 1547–1552 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    Staszczuk, P., Sternik, D., Chadzynski, G.W., Robens, E., Blachnio, M.: J. Therm. Anal. Calorim. 86, 133–136 (2006) CrossRefGoogle Scholar
  18. 18.
    Staszczuk, P., Sternik, D., Chadzynski, G.W., Kutarov, V.V.: J. Alloys Compd. 367, 277–282 (2004) CrossRefGoogle Scholar
  19. 19.
    Neimark, A., Lin, Y., Ravikovitch, P., Thommes, M.: Carbon 47, 1617–1628 (2009) CrossRefGoogle Scholar
  20. 20.
    Rouquerol, F., Rouquerol, J., Sing, K.: Adsorption by Powders and Porous Solids. Principles Methodology and Applications. Academic Press, San Diego (1999) Google Scholar
  21. 21.
    Staszczuk, P., Chadzynski, G.W., Sternik, D.: J. Therm. Anal. Calorim. 62, 451–459 (2000) CrossRefGoogle Scholar
  22. 22.
    Shi, D., Capone, D.W., Goudey, G.T., Singh, J.P., Zaluzec, N.J., Goretta, K.C.: Mater. Lett. 6, 217–221 (1988) CrossRefGoogle Scholar
  23. 23.
    Murakami, M.: Supercond. Sci. Technol. 5, 185–203 (1992) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • C. K. Piumbini
    • 1
  • F. Deleprani
    • 1
  • J. Quispe-Marcatoma
    • 2
  • A. Takeuchi
    • 1
  • W. L. Scopel
    • 1
    • 3
  • A. Lopez
    • 4
  • A. Cunha
    • 1
  • A. Gomes
    • 5
  • J. L. Gonzalez
    • 1
  1. 1.Dpto. de FisicaUniversidade Federal do Espírito SantoVitóriaBrasil
  2. 2.Centro Brasileiro de Pesquisas FísicasRio de JaneiroBrasil
  3. 3.Dpto. Ciências ExatasUFFVolta RedondaBrasil
  4. 4.Universidade do Estado do Rio de JaneiroRio de JaneiroBrasil
  5. 5.Universidade Federal do Rio de JaneiroRio de JaneiroBrasil

Personalised recommendations