Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 25, Issue 7, pp 2199–2203 | Cite as

Coercivity Control of Variable-Length Iron Chains in Phthalocyanine Thin Films

  • Thomas Gredig
  • Mathew Werber
  • Jorge L. Guerra
  • Evan A. Silverstein
  • Matthew P. Byrne
  • Brian G. Cacha
Original Paper
  • 216 Downloads

Abstract

The magnetic characteristics of iron phthalocyanine thin films are studied with a vibrating sample magnetometer, identifying a ferromagnetic transition temperature at 4.5 K. The metal ions at the center of the molecule are self-assembled along chains producing quasi one-dimensional magnetic chains of variable length in the thin films. The average chain length is varied from 20 to 300 nm via substrate temperature during deposition. Below the critical transition temperature, the magnetization curves have the shape of wasp-waisted or constricted loops. The in-plane chain length modulates the coercivity and saturation field and larger grains increase the coercivity significantly. First-order reversal curves of the wasp-waisted hysteresis loops reveal a long narrow strip that suggests a broad distribution of coercive fields and weak intergrain magnetic interactions. These findings are also supported through simulations based on the Preisach model.

Keywords

Metallo-organic molecule Coercivity Low-dimensional ferromagnetism First-order reversal curves Iron chains Preisach model 

Notes

Acknowledgements

This work has been supported with by a grant from NSF DMR-0847552 and the support of the College of Natural Sciences and Mathematics at CSU Long Beach. The authors thank José de la Venta and Ivan K. Schuller for performing x-ray diffraction measurement to analyze the film quality at the University of California, San Diego.

References

  1. 1.
    Yonehara, H., Pac, C.: Thin Solid Films 278, 108 (1996) ADSCrossRefGoogle Scholar
  2. 2.
    Yang, R.D., Gredig, T., Colesniuc, C.N., Park, J., Schuller, I.K., Trogler, W.C., Kummel, A.C.: Appl. Phys. Lett. 90, 263506 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    Bao, Z.: Adv. Mater. 12, 227 (2000) CrossRefGoogle Scholar
  4. 4.
    Bozdag, K.D., Yoo, J.-W., Raju, N.P., McConnell, A.C., Miller, J.S., Epstein, A.J.: Phys. Rev. B 82, 094449 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    Pajerowski, D.M., Andrus, M.J., Gardner, J.E., Knowles, E.S., Meisel, M.W., Talham, D.R.: J. Am. Chem. Soc. 132, 4058 (2010) CrossRefGoogle Scholar
  6. 6.
    Naber, W.J.M., Faez, S., van der Wiel, W.G.: J. Phys. D, Appl. Phys. 40, R205 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    Miller, J.S., Gatteschi, D.: Chem. Soc. Rev. 40, 3065 (2011) CrossRefGoogle Scholar
  8. 8.
    Miller, J.S., Epstein, A.J.: Mater. Res. Soc. Bull. 25, 21 (2000) CrossRefGoogle Scholar
  9. 9.
    Mukai, K.: Bull. Chem. Soc. Jpn. 42, 40 (1969) CrossRefGoogle Scholar
  10. 10.
    Awaga, K., Sugano, T., Kinoshita, M.: Chem. Phys. Lett. 128, 587 (1986) ADSCrossRefGoogle Scholar
  11. 11.
    Miller, J.S.: Adv. Mater. 14, 1105 (2002) CrossRefGoogle Scholar
  12. 12.
    Tamura, M., Nakazawa, Y., Shiomi, D., Nozawa, K., Hosokoshi, Y., Ishikawa, M., Takahashi, M., Kinoshita, M.: Chem. Phys. Lett. 186, 401 (1991) ADSCrossRefGoogle Scholar
  13. 13.
    Kinoshita, M.: Physica B, Condens. Matter 213–214, 257 (1995) CrossRefGoogle Scholar
  14. 14.
    Pajerowski, D.M., Gardner, J.E., Andrus, M.J., Datta, S., Gomez, A., Kycia, S.W., Hill, S., Talham, D.R., Meisel, M.W.: Phys. Rev. B 82, 214405 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    Forrest, S.R.: Chem. Rev. 97, 1793 (1997) CrossRefGoogle Scholar
  16. 16.
    Miller, C.W., Sharoni, A., Liu, G., Colesniuc, C.N., Fruhberger, B., Schuller, I.K.: Phys. Rev. B 72, 104113 (2005) ADSCrossRefGoogle Scholar
  17. 17.
    Liu, G., Gredig, T., Schuller, I.K.: Europhys. Lett. 83, 56001 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    Gentry, K.P., Gredig, T., Schuller, I.K.: Phys. Rev. B 80, 174118 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    Sinha, S.K., Sirota, E.B., Garoff, S., Stanley, H.B.: Phys. Rev. B 38, 2297 (1988) ADSCrossRefGoogle Scholar
  20. 20.
    Evangelisti, M., Bartolomé, J., de Jongh, L.J., Filoti, G.: Phys. Rev. B 66, 144410 (2002) ADSCrossRefGoogle Scholar
  21. 21.
    Peisert, H., Schwieger, T., Auerhammer, J.M., Knupfer, M., Golden, M.S., Fink, J., Bressler, P.R., Mast, M.: J. Appl. Phys. 90, 466 (2001) ADSCrossRefGoogle Scholar
  22. 22.
    Yamada, H., Shimada, T., Koma, A.: J. Chem. Phys. 108, 10256 (1998) ADSCrossRefGoogle Scholar
  23. 23.
    Garcia, M.A., Pinel, E.F., de la Venta, J., Quesada, A., Bouzas, V., Fernández, J.F., Romero, J.J., González, M.S.M., Costa-Krämer, J.L.: J. Appl. Phys. 105, 013925 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    Gredig, T., Gentry, K., Colesniuc, C., Schuller, I.: J. Mater. Sci. 45, 5032 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    Bennett, L.H., Della Torre, E.: J. Appl. Phys. 97, 10E502 (2005) CrossRefGoogle Scholar
  26. 26.
    Pike, C.R., Roberts, A.P., Verosub, K.L.: J. Appl. Phys. 85, 6660 (1999) ADSCrossRefGoogle Scholar
  27. 27.
    Carvallo, C., Özdemir, O., Dunlop, D.J.: J. Geophys. Res. 109, B04105 (2004) ADSCrossRefGoogle Scholar
  28. 28.
    Carvallo, C., Muxworthy, A.R., Dunlop, D.J.: Phys. Earth Planet. Inter. 154, 308 (2006) ADSCrossRefGoogle Scholar
  29. 29.
    Preisach, F.: Z. Phys. 94, 277 (1935) ADSCrossRefGoogle Scholar
  30. 30.
    Stoner, E.C., Wohlfarth, E.P.: Philos. Trans. R. Soc. A 240, 599 (1948) ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Thomas Gredig
    • 1
  • Mathew Werber
    • 1
  • Jorge L. Guerra
    • 1
  • Evan A. Silverstein
    • 1
  • Matthew P. Byrne
    • 1
  • Brian G. Cacha
    • 1
  1. 1.Department of Physics and AstronomyCalifornia State University Long BeachLong BeachUSA

Personalised recommendations