Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 25, Issue 7, pp 2407–2414 | Cite as

Theoretical Investigations of Hysteresis Loops of Ferroelectric or Ferrielectric Nanotubes with Core/Shell Morphology

  • A. Zaim
  • M. Kerouad
  • M. Boughrara
  • A. Ainane
  • J. J. de Miguel
Original Paper

Abstract

In this paper, the hysteresis behavior of the nanotubes, consisting of a ferroelectric core of spin-1/2 surrounded by a ferroelectric shell of spin-1/2 with ferro- or anti-ferroelectric interfacial coupling is studied by using the transverse Ising model (TIM). Based on a probability distribution method, the effective field theory has been used to examine the effects of the interfacial coupling constant, the transverse field, and the temperature on the hysteresis loops of the nanotubes. A number of characteristic behaviors have been found, such as the existence of triple hysteresis loops for appropriate values of the system parameters. The remanent polarization and the coercive field, as functions of the temperature, are examined.

Keywords

Nanotubes Hysteresis loop Transverse Ising model Effective field theory 

Notes

Acknowledgements

This work has been initiated with the support of URAC: 08 and the Swedish Research Links programme dnr-348-2011- and completed during a visit of A.A. and M.K. to the Departamento de Física de la Materia Condensada, Universidad Autónoma, Madrid, Spain, in the frame of the projet No. A/030519/10 financed by A.E.C.I. The authors would like to thank all the organizations.

References

  1. 1.
    Auciello, O., Scott, J.F., Ramesh, R.: Phys. Today 51, 22 (1998) CrossRefGoogle Scholar
  2. 2.
    Scott, J.F.: Ferroelectric Memories. Springer, Berlin (2000) Google Scholar
  3. 3.
    Scott, J.F.: Science 315, 954 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    Van Keuls, F.W., Varaljay, N.C., Mueller, C.H., Alterovitz, S.A., Miranda, F.A., Romanofsky, R.R.: Integr. Ferroelectr. 77, 51 (2005) CrossRefGoogle Scholar
  5. 5.
    Liu, W., Sun, X.H., Han, H.W., Li, M.Y., Zhao, X.Z.: Appl. Phys. Lett. 89, 163122 (2006) ADSCrossRefGoogle Scholar
  6. 6.
    Alexe, M., Hesse, D., Schmidt, V., Senz, S., Fan, H.J., Zacharias, M., Gosele, U.: Appl. Phys. Lett. 89, 172907 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    Schilling, A., Byrne, D., Catalan, G., Webber, K.G., Genenko, Y.A., Wu, G.S., Scott, J.F., Gregg, J.M.: Nano Lett. 9, 3359 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    Zhou, Z.H., Gao, X.S., Wang, J., Fujihara, K., Ramakrishna, S., Nagarajan, V.: Appl. Phys. Lett. 90, 052902 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    Naumov, I.I., Fu, H.X.: Phys. Rev. Lett. 95, 247602 (2005) ADSCrossRefGoogle Scholar
  10. 10.
    Zhong, L.W., Wang, Y.G., Zhang, P.L., Qu, B.D.: Phys. Rev. B 50, 698 (1994) ADSCrossRefGoogle Scholar
  11. 11.
    Morozovska, A.N., Eliseev, E.A., Glinchuk, M.D.: Phys. Rev. B 73, 214106 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    Wang, B., Woo, C.H.: J. Appl. Phys. 97, 084109 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    Woo, C.H., Zheng, Y.: Appl. Phys. A 91, 59 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    Wang, Y.G., Zhong, W.L., Zhang, P.L.: Solid State Commun. 92, 519 (1994) ADSCrossRefGoogle Scholar
  15. 15.
    Yu, T., Shena, Z.X., Toh, W.S., Xue, J.M., Wang, J.: J. Appl. Phys. 94, 618 (2003) ADSCrossRefGoogle Scholar
  16. 16.
    Lopatina, L.M., Selinger, J.V.: Phys. Rev. Lett. 102, 197802 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    de Gennes, P.G.: Solid State Commun. 1, 132 (1963) ADSCrossRefGoogle Scholar
  18. 18.
    Lu, Z.X., Teng, B.H., Lu, X.H., Zhang, X.J., Wang, C.D.: Solid State Commun. 149, 1176 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    Saber, M., Lukyanchuk, I., Madani, M., Tabyaoui, A., Ainane, A.: Chin. J. Phys. 45, 58 (2007) Google Scholar
  20. 20.
    Apostolova, I., Wesselinowa, J.M.: Solid State Commun. 147, 74 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    Kaneyoshi, T.: Phys. Status Solidi B 242, 2938 (2005) ADSCrossRefGoogle Scholar
  22. 22.
    Michael, Th., Trimperand, S., Wesselinowa, J.M.: Phys. Rev. B 74, 214113 (2006) ADSCrossRefGoogle Scholar
  23. 23.
    Michael, Th., Trimperand, S., Wesselinowa, J.M.: Phys. Rev. B 76, 094107 (2007) ADSCrossRefGoogle Scholar
  24. 24.
    Wanga, C.D., Lua, Z.Z., Yuana, W.X., Kwoka, S.Y., Tengb, B.H.: Phys. Lett. A 375, 3405 (2011) ADSCrossRefGoogle Scholar
  25. 25.
    Kaneyoshi, T.: J. Magn. Magn. Mater. 322, 3014 (2010) ADSCrossRefGoogle Scholar
  26. 26.
    Kaneyoshi, T.: J. Magn. Magn. Mater. 322, 3410 (2010) ADSCrossRefGoogle Scholar
  27. 27.
    Kaneyoshi, T.: Phys. Status Solidi B 248, 250 (2011) ADSCrossRefGoogle Scholar
  28. 28.
    Kaneyoshi, T.: Physica A 390, 3697 (2011) ADSCrossRefGoogle Scholar
  29. 29.
    Zaim, A., Kerouad, M.: Physica A 389, 3435 (2010) ADSCrossRefGoogle Scholar
  30. 30.
    Zaim, A., Kerouad, M., El Amraoui, Y.: J. Magn. Magn. Mater. 321, 1077 (2009) ADSCrossRefGoogle Scholar
  31. 31.
    Keskin, M., Şarli, N., Deviren, B.: Solid State Commun. 151, 1025 (2011) ADSCrossRefGoogle Scholar
  32. 32.
    Ganpule, C.S., Stanishevsky, A., Su, Q., Aggarwal, S., Melngailis, J., Williams, E., Ramesh, R.: Appl. Phys. Lett. 75, 409 (1999) ADSCrossRefGoogle Scholar
  33. 33.
    Harnagea, C., Alexe, M., Schilling, J., Wehrspohn, R.B., Hesse, D., Gösele: Appl. Phys. Lett. 83, 1827 (2003) ADSCrossRefGoogle Scholar
  34. 34.
    Roelofs, A., Schneller, T., Szot, K., Waser, R.: Appl. Phys. Lett. 81, 5231 (2002) ADSCrossRefGoogle Scholar
  35. 35.
    Szafraniak, I., Harnagea, C., Scholz, R., Bhattacharyya, S., Hesse, D., Alexe, M.: Appl. Phys. Lett. 83, 2211 (2003) ADSCrossRefGoogle Scholar
  36. 36.
    Kaneyoshi, T.: Solid State Commun. 151, 1528 (2011) ADSCrossRefGoogle Scholar
  37. 37.
    Sy, H.K.: J. Phys., Condens. Matter 5, 1213 (1993) ADSCrossRefMathSciNetGoogle Scholar
  38. 38.
    Sy, H.K.: Phys. Rev. B 45, 4454 (1992) ADSCrossRefGoogle Scholar
  39. 39.
    Wang, X.Z., Jiao, X.Y., Wang, J.J.: J. Phys., Condens. Matter 4, 3651 (1992) ADSCrossRefGoogle Scholar
  40. 40.
    Boughrara, M., Kerouad, M.: Physica A 374, 669 (2007) ADSCrossRefGoogle Scholar
  41. 41.
    Jiang, W., Lo, V.C., Bai, B.D., Yang, J.: Physica A 389, 2227 (2010) ADSCrossRefGoogle Scholar
  42. 42.
    Xu, Y., Xue, D.S., Fu, J.L., Gao, D.Q., Gao, B.: J. Phys. D, Appl. Phys. 41, 215010 (2008) ADSCrossRefGoogle Scholar
  43. 43.
    Garcia, J.A., Bertran, E., Elbaile, L., Garcia-Cespedes, J., Svalov, A.: Phys. Status Solidi C 7, 2679 (2010) ADSCrossRefGoogle Scholar
  44. 44.
    Fleaca, C.T., Morjan, I., Alexandrescu, R., Dumitrache, F., Soare, I., Gavrila-Florescu, L., Le Normand, F., Derory, A.: Appl. Surf. Sci. 255, 5386 (2009) ADSCrossRefGoogle Scholar
  45. 45.
    Mi, B.Z., Wang, H.Y., Zhou, Y.S.: J. Magn. Magn. Mater. 322, 952 (2010) ADSCrossRefGoogle Scholar
  46. 46.
    Wu, Y.Z., Yao, D.L., Li, Z.Y.: J. Appl. Phys. 91, 1482 (2002) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • A. Zaim
    • 1
  • M. Kerouad
    • 1
    • 2
  • M. Boughrara
    • 1
  • A. Ainane
    • 1
    • 2
  • J. J. de Miguel
    • 2
  1. 1.Laboratoire Physique des Matériaux et Modélisation des Systèmes (LP2MS), Unité Associée au CNRST-URAC: 08, Faculty of SciencesUniversity Moulay IsmailMeknesMorocco
  2. 2.Dpto. Física de la Materia Condensada, C-3 and Institute of Materials Sciences“Nicolás Cabrera” Univ. AutónomaMadridSpain

Personalised recommendations