Reconstruction of the Charge Density Wave State Under the Applied Electric Field

  • Tianyou Yi
  • Yulang Luo
  • Alvaro Rojo-Bravo
  • Natacha Kirova
  • Serguei Brazovskii
Original Paper


Charge density wave (CDW) under an applied electric field in constraint geometry experience stresses, which can easily exceed a plastic threshold. The stress is resolved by the ground state reconstruction which proceed via creation of topological defects like solitons and dislocations—the CDW vortices. These states can be observed experimentally either in average at macroscopic scales of X-ray and multijunction space resolved studies, at mesoscopic scales of coherent X-ray micro-diffraction and nano-junctions or individually as by the STM. Here, we report numerical modeling taking into account multiple fields in their mutual nonlinear interactions: the phase and the amplitude of the CDW order parameter, distributions of the electric field, of the density and the current of normal carriers. Following events of creation and the subsequent evolution of dislocations, we find that vortices are formed in the junction when the voltage across, or the current through, exceed a threshold. The number of vortices remnant in the reconstructed ground state increases stepwise—in agreement with experiments. The vortex core concentrates the voltage drop across the junction giving rise to observed peaks of the interlayer tunneling. The studied reconstruction in junctions of CDWs may be relevant to modern efforts of the field-effect transformations in other correlated electronic systems.


Electronic crystal CDW Nanojunction Field-effect Dislocation Vortex 


  1. 1.
    Brazovskii, S., Kirova, N., Monceau, P. (eds.): Proceedings of the International Workshops on Electronic Crystals—ECRYS 2008. Physica B 404, 347–576 (2009) CrossRefGoogle Scholar
  2. 2.
    Brazovskii, S.: J. Supercond. Nov. Magn. 20, 489–493 (2007) CrossRefGoogle Scholar
  3. 3.
    Brazovskii, S.: In: Ref. [1], pp. 482–486 Google Scholar
  4. 4.
    Latyshev, Y.I., Monceau, P., Brazovskii, S., Orlov, A.P., Fournier, T.: Phys. Rev. Lett. 95, 266402 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    Latyshev, Y.I., Monceau, P., Brazovskii, S., Orlov, A.P., Fournier, T.: Phys. Rev. Lett. 96, 116402 (2006) ADSCrossRefGoogle Scholar
  6. 6.
    Brazovskii, S., Brun, C., Wang, Z.-Z., Monceau, P.: Phys. Rev. Lett. 108, 096801 (2012) ADSCrossRefGoogle Scholar
  7. 7.
    Le Bolloc’h, D., Jacques, V.L.R., Kirova, N., Dumas, J., Ravy, S., Marcus, J., Livet, F.: Phys. Rev. Lett. 100, 096403 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    Brazovskii, S., Kirova, N., Requardt, H., Nad, F.Ya., Monceau, P., Currat, R., Lorenzo, J.E., Grübel, G., Vettier, Ch.: Phys. Rev. B 61, 10640 (2000) ADSCrossRefGoogle Scholar
  9. 9.
    Requardt, H., Nad, F., Monceau, P., Currat, R., Lorenzo, J.E., Brazovskii, S., Kirova, N., Grübel, G., Vettier, Ch.: Phys. Rev. Lett. 80, 5631 (1998) ADSCrossRefGoogle Scholar
  10. 10.
    Brazovskii, S.A., Matveenko, S.I.: Sov. Phys. JETP 72, 5 (1991) 860 Google Scholar
  11. 11.
    Brazovskii, S.A., Matveenko, S.I.: Sov. Phys. JETP 74, 5 (1992) 864 Google Scholar
  12. 12.
    Hayashi, M., Yoshioka, H.: Phys. Rev. Lett. 77, 3403 (1996) ADSCrossRefGoogle Scholar
  13. 13.
    Melikidze, A.: Phys. Rev. B 58, 13534 (1998) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Tianyou Yi
    • 1
  • Yulang Luo
    • 1
  • Alvaro Rojo-Bravo
    • 2
  • Natacha Kirova
    • 3
  • Serguei Brazovskii
    • 1
  1. 1.LPTMS-CNRS, UMR 8626Université Paris-Sud bat. 100OrsayFrance
  2. 2.Department of PhysicsBoston UniversityBostonUSA
  3. 3.LPS-CNRS, UMR 8502Université Paris-Sud bat. 510OrsayFrance

Personalised recommendations