Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 25, Issue 6, pp 1979–1993 | Cite as

Experiment and Theoretical Study of Critical Behavior in Magnetic Multilayers

  • R. Masrour
  • M. Hamedoun
  • A. Benyoussef
  • H. Lassri
Original Paper

Abstract

Ni/NM multilayers (with noble metal NM=Au,Ag and Cu) were prepared by the electron beam evaporation method under ultra high vacuum conditions. The magnetic properties of Ni/NM multilayers are examined as a function of Ni layer thickness t Ni. The temperature dependence of the spontaneous magnetization M(T) is well described by a T 3/2 law in all multilayers. A spin-wave theory has been used to explain the temperature dependence of the magnetization and the approximate values for the bulk Exchange interaction J b and surface exchange interaction J s for various Ni layer thicknesses have been obtained.

In the other hand we have used the high-temperature series expansion technique, to analyze the phase transition and the critical phenomena of a ferromagnetic a two-component multilayer, through three models: Ising, XY and Heisenberg. The critical reduced temperature τ c (ν) is studied as function of the thickness of constituents in the unit cell of the multilayer. In the two-component multilayer τ c (ν) is studied as function of the exchange interaction in each material and within the interface J s ,J b and J , respectively. A critical value of the surface exchange interaction in the film and interface exchange interaction in the multilayer above which the surface and the interface magnetism appears is obtained. The dependence of the reduced critical temperature on the thickness of the film and the unit cell of multilayer has been investigated. The effects of an amorphous magnetic surface on the critical properties of the film of simple cubic lattice have been studied. A number of characteristic behaviors, such as the possibility of the existence of a critical length of the unit cell thickness at which the temperature of the multilayer remains insensitive to the exchange coupling within interface, are reported.

In a defined range of the exchange interactions, the values of γ are comparable to the universal ones and are independent of the film thickness. The asymmetry of the structure and the competition of the effects of the exchange coupling are important for the magnetic properties of the system.

Keywords

Ni/(Cu, Au, Ag) multilayers Magnetization Spin wave excitations High-temperature series expansions Non-equilibrium thermodynamics Exchange interactions Phase diagram 

References

  1. 1.
    Cameley, R.E., Stamps, R.L.: J. Phys. 5, 3727 (1993) Google Scholar
  2. 2.
    Shaulov, G., Seidov, Y.: J. Magn.Magn. Mater. 140, 527 (1995) ADSCrossRefGoogle Scholar
  3. 3.
    Balcerzak, T., Tucker, J.W.: J. Magn. Magn. Mater. 140, 653 (1995) ADSCrossRefGoogle Scholar
  4. 4.
    Hai, T., Li, Z.V., Lin, D.L., George, T.F.: J. Magn. Magn. Mater. 97, 227 (1991) ADSCrossRefGoogle Scholar
  5. 5.
    Aguilera-Granaja, F., Moran-Lopez, J.L.: Solid State Commun. 47, 155 (1990) ADSCrossRefGoogle Scholar
  6. 6.
    Saber, A., Ainane, A., Dujardin, F., Stébé, B.: Phys.Rev. B 59, 6908 (1999) ADSCrossRefGoogle Scholar
  7. 7.
    Moschel, A., Usadel, K.D.: Phys. Rev. B 49, 868 (1994) CrossRefGoogle Scholar
  8. 8.
    Moschel, A., Usadel, K.D.: Phys. Rev. B 51, 111 (1995) CrossRefGoogle Scholar
  9. 9.
    Binder, K., Landau, D.P.: J. Appl. Phys. 57, 3306 (1985) ADSCrossRefGoogle Scholar
  10. 10.
    Binder, K., Landau, D.P.: Phys. Rev. B 37, 1745 (1988) ADSCrossRefGoogle Scholar
  11. 11.
    Binder, K., Landau, D.P., Ferrenberg, A.M.: Phys. Rev. Lett. 74, 298 (1995) ADSCrossRefGoogle Scholar
  12. 12.
    Binder, K., Landau, D.P., Ferrenberg, A.M.: Phys. Rev. E 51, 2823 (1995) ADSCrossRefGoogle Scholar
  13. 13.
    Binder, K., Evans, R., Landau, D.P., Ferrenberg, A.M.: Phys. Rev. E 53, 5023 (1996) ADSCrossRefGoogle Scholar
  14. 14.
    Onellion, M.F., Fu, C.I., Thomson, M.A., Erskine, J.L., Freeman, A.J.: Phys. Rev. B 33, 7322 (1986) ADSCrossRefGoogle Scholar
  15. 15.
    Thomson, M., Erskine, J.L.: Phys. Rev. B 31, 6832 (1985) ADSCrossRefGoogle Scholar
  16. 16.
    Kwo, J., Georgy, E.M, McWhan, D.B., Hong, M., DiSalvo, F.J., Vettier, C., Wev, I.F.: Phys. Rev. Lett. 55, 1402 (1985) ADSCrossRefGoogle Scholar
  17. 17.
    Camley, R.E., Barnas, J.: Phys. Rev. Lett. 63, 664 (1959) ADSCrossRefGoogle Scholar
  18. 18.
    Krebs, J.J., Lubirtz, P., Chaiken, A., Prinz, G.A.: Phys. Rev. Lett. 63, 1645 (1989) ADSCrossRefGoogle Scholar
  19. 19.
    Capeheart, T.W., Fisher, M.E.: Phys. Rev. B 13, 5021 (1976) ADSCrossRefGoogle Scholar
  20. 20.
    Farle, M., Baberschke, K.: Phys. Rev. Lett. 58, 511 (1987) ADSCrossRefGoogle Scholar
  21. 21.
    Chui, S.T.: Phys. Rev. B 50, 12559 (1994) ADSCrossRefGoogle Scholar
  22. 22.
    Hu, X., Kawazoe, Y.: Phys. Rev. B 50, 12647 (1994) ADSCrossRefGoogle Scholar
  23. 23.
    Saber, A., Ainane, A., Dujardin, F., Saber, M., Stébé, B.: Physica A 269, 329 (1999) ADSCrossRefGoogle Scholar
  24. 24.
    Lin, D.L., Che, H., Xia, Y.: Phys. Rev. A 46, 1805 (1992) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Kaneyoshi, T.: Phys. Rev. B 39, 557 (1989) ADSCrossRefGoogle Scholar
  26. 26.
    Ilkovski, V.: Surf. Sci. 365, 168 (1996) ADSCrossRefGoogle Scholar
  27. 27.
    Diep, H.T., Levy, J.C.S., Nagai, O.: Phys. Stat. Solidi (b) 93, 351 (1979) ADSCrossRefGoogle Scholar
  28. 28.
    Diep, H.T.: Phys. Stat. Solidi (b) 103, 809 (1981) ADSCrossRefGoogle Scholar
  29. 29.
    Diep, H.T.: Phys. Rev. B 43, 8509 (1991) ADSCrossRefGoogle Scholar
  30. 30.
    Henelius, P., Frobrich, P., Kuntz, P.J., Timm, C., Jensen, P.J.: Phys. Rev. B 66, 94107 (2002) CrossRefGoogle Scholar
  31. 31.
    Mermin, N.D., Wagner, H.: Phys. Rev. Lett. 17, 1133 (1966) ADSCrossRefGoogle Scholar
  32. 32.
    Mermin, N.D.: Phys. Rev. 176, 250 (1968) ADSCrossRefGoogle Scholar
  33. 33.
    Gelfert, A., Nolting, W.: Phys. Stat. Solidi (b) 217, 805 (2000) ADSCrossRefGoogle Scholar
  34. 34.
    Goldenfeld, N.: Lectures on Phase Transitions and the Renormalization Group. Addison-Wesley, Reading (1992) Google Scholar
  35. 35.
    Stanley, H.E.: Phys. Rev. 158, 546 (1967) ADSCrossRefGoogle Scholar
  36. 36.
    Stanley, H.E.: Phys. Rev. 158, 537 (1967) ADSCrossRefGoogle Scholar
  37. 37.
    Hamedoun, M., Cherriet, Y., Hourmatallah, A., Benzakour, N.: Phys. Rev. B 63, 172402 (2001) ADSCrossRefGoogle Scholar
  38. 38.
    Fishman, F., Schwabl, F., Schwenk, D.: Phys. Lett. A 121, 192 (1987) ADSCrossRefGoogle Scholar
  39. 39.
    Camley, R.E., Tilley, D.R.: Phys rev. B 37, 3413 (1988) ADSCrossRefGoogle Scholar
  40. 40.
    Tilley, D.R.: Solid State Commun. 65, 657 (1988) ADSCrossRefGoogle Scholar
  41. 41.
    Barnas, J.: J. Phys. C 21, 1021 (1988) ADSCrossRefGoogle Scholar
  42. 42.
    Barnas, J.: J. Phys. 2, 7173 (1990) Google Scholar
  43. 43.
    Sy, H.K., Ow, M.H.: J. Phys., Condens. Matter 4, 8073 (1992) CrossRefGoogle Scholar
  44. 44.
    Seidov, Y.M., Shaulov, G.R.: J. Phys., Condens. Matter 6, 9621 (1994) ADSCrossRefGoogle Scholar
  45. 45.
    Saber, A., Ainane, A., Saber, M., Essaoudi, I., Dujardin, F., Stébé, B.: Phys. Rev. B 60, 4149 (1999) ADSCrossRefGoogle Scholar
  46. 46.
    Baker, G.A., Graves-Morris, P. (eds.): Padé Approximants. Addison-Wesley, London (1981) Google Scholar
  47. 47.
    Stanley, H.E.: Phys. Rev. 158, 537 (1967) ADSCrossRefGoogle Scholar
  48. 48.
    Stanley, H.E., Kaplan, T.A.: Phys. Rev. Lett. 16, 981 (1966) MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    Moron, M.C.: J. Phys., Condens. Matter 8, 11141 (1996) ADSCrossRefGoogle Scholar
  50. 50.
    Hamedoun, M., Houssa, M., Benzakour, N., Hourmatallah, A.: J. Phys., Condens. Mater 10, 3611 (1998) ADSCrossRefGoogle Scholar
  51. 51.
    Hamedoun, M., Bakrim, H., Hourmatallah, A., Benzakour, N.: Surf. Sci. 539, 155 (2003) ADSCrossRefGoogle Scholar
  52. 52.
    Pinettes, C., Lacroix, C.: J. Magn. Magn. Mater. 166, 59 (1997) ADSCrossRefGoogle Scholar
  53. 53.
    Holstein, T., Primakoff, H.: Phys. Rev. 58, 1098 (1940) ADSMATHCrossRefGoogle Scholar
  54. 54.
    Dyson, F.J.: Phys. Rev. 102, 1217 (1956) MathSciNetADSMATHCrossRefGoogle Scholar
  55. 55.
    Oguchi, T.: Phys. Rev. 117, 117 (1960) ADSMATHCrossRefGoogle Scholar
  56. 56.
    Lassri, M., Omri, M., Ouahmane, H., Abid, M., Ayadi, M., Krishnan, R.: Physica B 344, 319 (2004) ADSCrossRefGoogle Scholar
  57. 57.
    Benkirane, K., Elkabil, R., Lassri, M., Abid, M., Lassri, H., Berrada, A., Hamdoun, A., Krishnan, R.: Materials Science and Engineering B 116, 25 (2005) CrossRefGoogle Scholar
  58. 58.
    Wagner, K., Weber, N., Elmers, H.J., Gradmann, U.: J. Magn. Magn. Mater. 167, 21 (1997) ADSCrossRefGoogle Scholar
  59. 59.
    Korecki, J., Przybylski, M., Gradmann, U.: J. Magn. Magn. Mater. 89, 325 (1990) ADSCrossRefGoogle Scholar
  60. 60.
    Bergholtz, R., Gradmann, U.: J. Magn. Magn. Mater. 45, 389 (1984) ADSCrossRefGoogle Scholar
  61. 61.
    Kray, U.: J. Magn. Magn. Mater. 268, 277 (2004) ADSCrossRefGoogle Scholar
  62. 62.
    Jiles, D.: Introduction to Magnetism and Magnetic Materials, Ames, p. 134. Chapman & Hall, Iowa (1991) CrossRefGoogle Scholar
  63. 63.
    Parkin, S.S.P.: Phys. Rev. Lett. 67, 3598 (1991) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • R. Masrour
    • 1
    • 2
  • M. Hamedoun
    • 3
    • 4
  • A. Benyoussef
    • 2
    • 3
    • 4
  • H. Lassri
    • 5
  1. 1.Laboratory of Materials, Processes, Environment and Quality, National School of Applied SciencesCady Ayyed UniversitySafiMorocco
  2. 2.LMPHE, Faculté des SciencesUniversité Mohamed VRabatMorocco
  3. 3.Institute for Nanomaterials and NanotechnologiesRabatMorocco
  4. 4.Academie Hassan II des Sciences et TechniquesRabatMorocco
  5. 5.LPMMAT, Faculté des Sciences Ain ChockUniversité Hassan IICasablancaMorocco

Personalised recommendations