Journal of Superconductivity and Novel Magnetism

, Volume 25, Issue 6, pp 1761–1767 | Cite as

Artificial Pinning Centers on MgB2 Superconducting Thin Films Coated by FeO Nanoparticles

  • E. Taylan Koparan
  • A. Surdu
  • A. Awawdeh
  • A. Sidorenko
  • E. Yanmaz
Original Paper


MgB2 thin films were fabricated on MgO (100) single crystal substrates. First, deposition of boron was performed by rf magnetron sputtering on MgO substrates and followed by a post deposition annealing at 850 °C in magnesium vapor. In order to investigate the effect of FeO nanoparticles on magnetic properties of MgB2 thin films, the films were coated with different concentrations of FeO nanoparticles by spin coating process. The magnetic field dependence of the critical current density \(J_{\mathrm{c}}\) was calculated from the MH loops and also magnetic field dependence of the pinning force density \(f_{\mathrm{p}}(b)\) was determined for the films containing different concentrations of FeO nanoparticles. The values of the critical current density \(J_{\mathrm{c}}\) in zero field at 5 K was found to be around 1×106 A/cm2 for pure MgB2 film, 1.4×106 for MgB2 film coated with 25 %, 7.2×105 for MgB2 film coated with 33 %, 9.1×105 for MgB2 film coated with 50 % and 1.1×106 A/cm2 for MgB2 film coated with 100 %. It was found that the film coated with 25 % FeO nanoparticles has slightly enhanced critical current density and it can be noted that especially the film coated with 25 % FeO became stronger in the magnetic field. The films coated with FeO were successfully produced and they indicated the presence of artificial pinning centers created by FeO nanoparticles. The superconducting transition temperature of the film coated with 25 % FeO nanoparticles was determined by moment–temperature (MT) measurement to be 34 K which is 4 K higher than that of the pure film.


MgB2 thin film FeO nanoparticles Artificial pinning centers Critical current density MgO substrate 



The authors acknowledge Dr. E. Scutelnic (at the Academy of Sciences of Moldova) for technical assistance. This work was supported by the Council of Higher Education (Turkey) and Scientific Research Coordination Unit of Karadeniz Technical University (Contract No. 2010.111.001.2).


  1. 1.
    Nagamatsu, J., Nakagawa, N., Zentiani, Y., Akimitsu, J.: Nature 410, 63–64 (2001) ADSCrossRefGoogle Scholar
  2. 2.
    Buzea, C., Yamashita, T.: Supercond. Sci. Technol. 14, R115–R146 (2001) ADSCrossRefGoogle Scholar
  3. 3.
    Lyard, L., Szabó, P., Klein, T., Marcus, J., Marcenat, C., Kim, K.H., Kang, B.W., Lee, H.S., Lee, S.-I.: Phys. Rev. Lett. 92, 057001 (2004) ADSCrossRefGoogle Scholar
  4. 4.
    Vinod, K., Abhilash Kumar, R.G., Syamaprasad, U.: Supercond. Sci. Technol. 20, R1 (2007) CrossRefGoogle Scholar
  5. 5.
    Larbalestier, D.C., Gurevich, A., Feldmann, D.M., Polyanskii, A.: Nature 414, 368 (2001) ADSCrossRefGoogle Scholar
  6. 6.
    Larbalestier, D.C., Cooley, L.D., Rikel, M.O., Polyanskii, A.A., Jiang, J., Patnaik, S., Cai, X.Y., Feldmann, D.M., Gurevich, A., Squitieri, A.A., Naus, M.T., Eom, C.B., Hellstrom, E.E., Cava, R.J., Regan, K.A., Rogado, N., Hayward, M.A., He, T., Slusky, J.S., Khalifah, P., Inumaru, K., Haas, M.: Nature 410, 186–189 (2001) ADSCrossRefGoogle Scholar
  7. 7.
    Naito, M., Ueda, K.: Supercond. Sci. Technol. 17, R1–R18 (2004) ADSCrossRefGoogle Scholar
  8. 8.
    Xu, S.Y., Li, Q., Wertz, E., Hu, Y.F., Pogrebnyakov, A.V., Zeng, X.H., Xi, X.X., Redwing, J.M.: Phys. Rev. B 68, 224501 (2003) ADSCrossRefGoogle Scholar
  9. 9.
    Zeng, X.H., Pogrebnyakov, A.V., Zhu, M.H., Jones, J.E., Xi, X.X., Xu, S.Y., Wertz, E., Li, Q., Redwing, J.M., Lettieri, J., Vaithyanathan, V., Schlom, D.G., Liu, Z.K., Trithaveesak, O., Schubert, J.: Appl. Phys. Lett. 82, 2097–2099 (2003) ADSCrossRefGoogle Scholar
  10. 10.
    Paranthaman, M., Cantoni, C., Zhai, H.Y., Christen, H.M., Aytug, T., Sathyamurthy, S., Specht, E.D., Thompson, J.R., Lowndes, D.H., Kerchner, H.R., Christen, D.K.: Appl. Phys. Lett. 78, 3669–3671 (2001) ADSCrossRefGoogle Scholar
  11. 11.
    Bugoslavsky, Y., Perkins, G.K., Qi, X., Cohen, L.F., Caplin, A.D.: Nature 410, 563 (2001) ADSCrossRefGoogle Scholar
  12. 12.
    Dou, S.X., Soltanian, S., Zhao, Y., Getin, E., Chen, Z., Shcherbakova, O., Horvat, J.: Supercond. Sci. Technol. 18, 710–715 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    Prozorov, T., Prozorov, R., Snezhko, A., Suslick, K.S.: Appl. Phys. Lett. 83, 10 (2003) CrossRefGoogle Scholar
  14. 14.
    Snezhko, A., Prozorov, T., Prozorov, R.: Phys. Rev. B 71, 024527 (2005) ADSCrossRefGoogle Scholar
  15. 15.
    Bu, S.D., Kim, D.M., Choi, J.H., Giencke, J., Hellstrom, E.E., Larbalestier, D.C., Patnaik, S., Cooley, L., Eom, C.B., Lettieri, J., Schlom, D.G., Tian, W., Pan, X.Q.: Appl. Phys. Lett. 81, 10 (2002) CrossRefGoogle Scholar
  16. 16.
    Choi, E.-M., Lee, H.-S., Kim, H.-J., Lee, S.-I., Kim, H.-J., Kang, W.N.: Appl. Phys. Lett. 84, 1 (2004) CrossRefGoogle Scholar
  17. 17.
    Shigeta, I., Abiru, T., Abe, K., Nishida, A., Matsumoto, Y.: Physica C 392–396, 359–363 (2003) CrossRefGoogle Scholar
  18. 18.
    Higuchi, T., Yoo, S.I., Murakami, M.: Phys. Rev. B 59(2), 1514–1527 (1999) ADSCrossRefGoogle Scholar
  19. 19.
    Shi, Z.X., Zhang, Y.X., Lv, H., Xu, M., Choi, E.-M., Lee, S.-I.: Physica C 467, 101–105 (2007) ADSCrossRefGoogle Scholar
  20. 20.
    Zhao, Y., Ionescu, M., Horvat, J., Li, A.H., Dou, S.X.: Supercond. Sci. Technol. 17, 1247–1252 (2004) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • E. Taylan Koparan
    • 1
    • 2
  • A. Surdu
    • 2
  • A. Awawdeh
    • 2
  • A. Sidorenko
    • 2
  • E. Yanmaz
    • 1
  1. 1.Physics DepartmentKaradeniz Technical UniversityTrabzonTurkey
  2. 2.Institute of Electronic Engineering and Industrial Technologies ASMChisinauRepublic of Moldova

Personalised recommendations