Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 25, Issue 6, pp 1679–1682 | Cite as

Forming-Free Unipolar Resistive Switching in BiFe0.95Co0.05O3 Films

  • Qingyu Xu
  • Zheng Wen
  • Yao Shuai
  • Di Wu
  • Shengqiang Zhou
  • Heidemarie Schmidt
Original Paper

Abstract

We report the forming-free unipolar resistive switching effects in polycrystalline BiFe0.95Co0.05O3 films which were spin-coated on ITO/glass substrates by a chemical solution deposition method. The resistive ratio of the high resistive state (HRS) to the low resistive state (LRS) is more than 2 orders of magnitude. The conduction of the HRS is dominated by the space-charge-limited conduction mechanism, while Ohmic behavior dominates the LRS, which suggests a filamentary conduction mechanism. The oxygen vacancies are considered to play an important role in forming the conducting filaments.

Keywords

Unipolar resistive switching Multiferroics Chemical deposition 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (51172044), the National Science Foundation of Jiangsu Province of China (BK2011617), National Key Projects for Basic Researches of China (2010CB923404), by NCET-09-0296, the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, and Southeast University.

References

  1. 1.
    Joshua Yang, J., Pickett, M.D., Li, X., Ohlberg, Douglas A.A., Stewart, D.R., Stanley Williams, R.: Nat. Nanotechnol. 3, 429 (2008) CrossRefGoogle Scholar
  2. 2.
    Chen, S., Wu, J.: Thin Solid Films 519, 499 (2010) ADSCrossRefGoogle Scholar
  3. 3.
    Lee, S., Kim, H., Park, J., Yong, K.: J. Appl. Phys. 108, 076101 (2010) ADSCrossRefGoogle Scholar
  4. 4.
    Schindler, C., Staikov, G., Waser, R.: Appl. Phys. Lett. 94, 072109 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    Menke, T., Meuffels, P., Dittmann, R., Szot, K., Waser, R.: J. Appl. Phys. 105, 066104 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M., Ramesh, R.: Science 299, 1719 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    Yang, C.-H., Seidel, J., Kim, S.Y., Rossen, P.B., Yu, P., Gajek, M., Chu, Y.H., Martin, L.W., Holcomb, M.B., He, Q., Maksymovych, P., Balke, N., Kalinin, S.V., Baddorf, A.P., Basu, S.R., Scullin, M.L., Ramesh, R.: Nat. Mater. 8, 485 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    Yin, K., Li, M., Liu, Y., He, C., Zhuge, F., Chen, B., Lu, W., Pan, X., Li, R.: Appl. Phys. Lett. 97, 042101 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    Li, M., Zhuge, F., Zhu, X., Yin, K., Wang, J., Liu, Y., He, C., Chen, B., Li, R.: Nanotechnology 21, 425202 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    Shuai, Y., Zhou, S., Bürger, D., Helm, M., Schmidt, H.: J. Appl. Phys. 109, 124417 (2011) Google Scholar
  11. 11.
    Chen, X., Wu, G., Zhang, H., Qin, N., Wang, T., Wang, F., Shi, W., Bao, D.: Appl. Phys. A 100, 987 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    Xu, Q., Wen, Z., Gao, J., Wu, D., Tang, S., Xu, M.X.: Physica B 406, 2025 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    Chang, W., Lai, Y., Wu, T., Wang, S., Chen, F., Tsai, M.: Appl. Phys. Lett. 92, 022110 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    Yang, Y.C., Pan, F., Zeng, F., Liu, M.: J. Appl. Phys. 106, 123705 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    Seo, J.W., Park, J., Lim, K.S., Yang, J., Kang, S.J.: Appl. Phys. Lett. 93, 223505 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    Mao, Q., Ji, Z., Xi, J.: J. Phys. D, Appl. Phys. 43, 395104 (2010) CrossRefGoogle Scholar
  17. 17.
    Peng, H., Wu, T.: Appl. Phys. Lett. 95, 152106 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    Yang, Y.C., Pan, F., Liu, Q., Liu, M., Zeng, F.: Nano Lett. 9, 1636 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    Ji, Z., Mao, Q., Ke, W.: Solid State Commun. 150, 1919 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    Chen, X., Wu, G., Bao, D.: Appl. Phys. Lett. 93, 093501 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    Xu, Q., Zheng, X., Wen, Z., Yang, Y., Wu, D., Xu, M.: Solid State Commun. 151, 624 (2011) ADSCrossRefGoogle Scholar
  22. 22.
    Allibe, J., Infante, I.C., Fusil, S., Bouzehouane, K., Jacquet, E., Deranlot, C., Bibes, M., Barthélémy, A.: Appl. Phys. Lett. 95, 182503 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    Yang, H., Wang, Y.Q., Jia, Q.X.: Appl. Phys. Lett. 96, 012909 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    Yao, J., Sun, Z., Zhong, L., Natelson, D., Tour, J.M.: Nano Lett. 10, 4105 (2010) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Qingyu Xu
    • 1
  • Zheng Wen
    • 2
  • Yao Shuai
    • 3
  • Di Wu
    • 2
  • Shengqiang Zhou
    • 3
  • Heidemarie Schmidt
    • 3
  1. 1.Department of PhysicsSoutheast UniversityNanjingChina
  2. 2.Department of Materials Science and EngineeringNanjing UniversityNanjingChina
  3. 3.Institut für Ionenstrahlphysik und MaterialforschungHelmholtz-Zentrum Dresden-Rossendorf e.V.DresdenGermany

Personalised recommendations