Journal of Superconductivity and Novel Magnetism

, Volume 25, Issue 6, pp 1647–1653 | Cite as

Chaos Synchronization in Josephson Junctions

  • Ahmad M. Harb
  • Bassam A. Harb
Original Paper


In this paper, we have discussed the application of new nonlinear recursive controllers on Josephson junction (JJ) chaotic systems. Controlling bifurcation as well as chaos has been rapidly advancing in the last decade. Thus, emphasis has been placed on control design techniques which result in prescribed nonlinear performance dynamics for practical controlled processes. This study has shown that a nonlinear recursive controller is effective in controlling an undesirable JJ chaotic behavior. In addition to that, the synchronization of two JJ chaotic nonlinear dynamical systems can be used to advantage in communication systems. In fact, communication security is promising through chaos. Using nonlinear control method, we have demonstrated that it is possible to achieve synchronization in electronic circuits such as JJ. The study showed the effectiveness of the designed controller in communication signal synchronization. For the purpose of verification and comparison, we designed a control signal based on master and slave concept.


Josephson junction Chaos theory Nonlinear control 


  1. 1.
    Salam, F.M., Sastry, S.S.: Dynamics of the forced Josephson junction circuit: the region of chaos. IEEE Trans. Circuits Syst. 32(8), 784–796 (1985) MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Whan, C.B., Lobb, C.J.: Complex dynamical behavior in RLC-shunted Josephson tunnel junctions. Phys. Rev. B 53(1), 405–413 (1996) ADSCrossRefGoogle Scholar
  3. 3.
    Dana, S.K., Sengupta, D.C., Edoh, K.D.: Chaotic dynamics in Josephson junction. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 48(8), 990–996 (2001) CrossRefGoogle Scholar
  4. 4.
    Scott, A.C., Petraglia, A.: Flux interactions on stacked Josephson junctions. Phys. Lett. A 211, 161–167 (1996) MathSciNetADSCrossRefMATHGoogle Scholar
  5. 5.
    Fistul, M.V.: Macroscopic quantum tunneling in globally coupled series arrays of Josephson junctions. Phys. Rev. B 75, 014502 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    Ott, E., Grebogi, C., York, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990) MathSciNetADSCrossRefMATHGoogle Scholar
  7. 7.
    Hunt, E.R.: Stabilizing high-period orbits in a chaotic system: the diode resonator. Phys. Rev. Lett. 67(15), 1953–1957 (1991) ADSCrossRefGoogle Scholar
  8. 8.
    Yang, T.H., Chen, S.F., Gou, Y.S.: Efficient strategy for the occasional proportional feedback method in controlling chaos. Phys. Rev. E 59(5), 5393–5399 (1999) ADSCrossRefGoogle Scholar
  9. 9.
    Atkin, I.L., Abraham, E.: Control of chaos in discrete Josephson transmission lines. IEEE Trans. Appl. Supercond. 7(2), 2894–2896 (1997) CrossRefGoogle Scholar
  10. 10.
    Olsen, O.H., Samuelsen, M.R.: Control of chaotic patterns in a Josephson junction model. Phys. Lett. A 266, 123–133 (2000) MathSciNetADSCrossRefMATHGoogle Scholar
  11. 11.
    Abraham, E., Atkin, I.L., Wilson, A.: Josephson voltage standard by controlling chaos. IEEE Trans. Appl. Supercond. 9(2), 4166–4169 (1999) CrossRefGoogle Scholar
  12. 12.
    Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421–428 (1992) ADSCrossRefGoogle Scholar
  13. 13.
    Harb, A., Harb, B.: Controlling chaos in Josephson-junction using nonlinear backstepping controller. IEEE Trans. Appl. Supercond. 16(4), 1988–1998 (2006) CrossRefGoogle Scholar
  14. 14.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990) MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Zhao, Y., Wang, W.: Chaos synchronization in a Josephson junction system via active sliding mode control. Chaos Solitons Fractals 41, 60–66 (2009) ADSCrossRefMATHGoogle Scholar
  16. 16.
    Bai, E.W., Lonngren, K.E.: Synchronization of two Lorenz systems using active control. Chaos Solitons Fractals 8, 51–58 (1997) ADSCrossRefMATHGoogle Scholar
  17. 17.
    Agiza, H.N., Yassen, M.T.: Synchronization of Rossler and Chen chaotic dynamical systems using active control. Phys. Lett. A 278, 191–197 (2001) MathSciNetADSCrossRefMATHGoogle Scholar
  18. 18.
    Ho, M.C., Hung, Y.C., Chou, C.H.: Phase and anti-phase synchronization of two chaotic systems by using active control. Phys. Lett. A 296, 43–48 (2002) ADSCrossRefMATHGoogle Scholar
  19. 19.
    Ho, M.Ch., Hung, Y.Ch.: Synchronization of two different systems by using generalized active control. Phys. Lett. A 301, 424–428 (2002) MathSciNetADSCrossRefMATHGoogle Scholar
  20. 20.
    Codreanu, S.: Synchronization of spatiotemporal nonlinear dynamical systems by an active control. Chaos Solitons Fractals 15, 507–510 (2003) ADSCrossRefMATHGoogle Scholar
  21. 21.
    Ucar, A., Lonngren, K.E., Bai, E.W.: Synchronization of the unified chaotic systems via active control. Chaos Solitons Fractals 27, 1292–1297 (2006) ADSCrossRefMATHGoogle Scholar
  22. 22.
    Yau, H.T.: Design of adaptive sliding mode controller for chaos synchronization with uncertainties. Chaos Solitons Fractals 22, 341–347 (2004) MathSciNetADSCrossRefMATHGoogle Scholar
  23. 23.
    Lin, J.Sh., Yan, J.J., Liao, T.L.: Chaotic synchronization via adaptive sliding mode observers subject to input nonlinearity. Chaos Solitons Fractals 24, 371–381 (2005) MathSciNetADSMATHGoogle Scholar
  24. 24.
    Lei, L., Xiang, W., Zhu, F.: Adaptive control design for a class of uncertain time-varying anti-synchronization chaotic systems. In: 8th World Congress on Intelligent Control and Automation (WCICA), 7–9 July 2010, pp. 4942–4947 (2010) Google Scholar
  25. 25.
    Harb, A.M., Zohdy, M.: Synchronization of two chaotic systems using nonlinear recursive controller. Int. J. Modell. Simul. 29(3) (2009) Google Scholar
  26. 26.
    Khalil, H.: Nonlinear Systems, 2nd edn. Prentice Hall, New York (1996) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.EE DepartmentGerman Jordanian UniversityAmmanJordan
  2. 2.EE DepartmentYarmouk UniversityIrbidJordan

Personalised recommendations