Origin of Magnetism from Native Point Defects in ZnO

  • B. Khalil
  • H. Labrim
  • O. Mounkachi
  • B. Belhorma
  • A. Benyoussef
  • A. El Kenz
  • E. Ntsoenzok
Original Paper


Based on the first-principle calculations by using the Korringa–Kohn–Rostoker coherent potential approximation (KKR-CPA) method in connection with the local density approximation (LDA), we study theoretically the electronic and magnetic properties of different point defects in ZnO, which are Zinc interstitials (Zni), Zinc antisites (ZnO), Oxygen interstitials (Oi) and Oxygen antisites (OZn) defects in ZnO. The supercell calculations were also performed using the full potential local-orbital (FPLO) band structure scheme.

This work presents detailed information about total and local density of states at some concentrations of these defects; the stability of the ferromagnetic state compared with the spin-glass state is investigated by comparing calculating their total energy. The results show on one hand that Zni and ZnO produce a shallow donor bellow the bottom of the conduction band (CB), while Oi and OZn produces the shallow acceptors above the top of the valence band (VB), and moment magnetic; on other hand that the ferromagnetic state is more stable than the spin-glass in Oxygen interstitials (Oi) and vice versa for oxygen antisites (OZn) of native point defects in ZnO. The other native point defects (Zni, ZnO, VO, and VZn) have a zero magnetic moment. The results show that the Curie temperature increases with the concentration of interstitial oxygen.


Ab-intio p-Type and n-type defects Ferromagnetic Spin-glass Curie temperature 


  1. 1.
    Tuomisto, F., Mycielski, A., Grasza, K.: Superlattices Microstruct. 218–221, 42 (2007) Google Scholar
  2. 2.
    Sharma, P., Gupta, A., Rao, K.V., Owens, F.J., Sharma, R., Ahuja, R., Osorio Guillen, J.M., Johansson, B., Gehring, G.A.: Nat. Mater. 673, 2 (2003) Google Scholar
  3. 3.
    Look, D.C., Farlow, G.c., Reunchan, P., et al.: Phys. Rev. Lett. 95, 225502 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    Ren, M., Feng, X., Li, P., Liu, X., Zhang, Z.: Solid State Communications Google Scholar
  5. 5.
    Wang, Q., Sun, Q., Chen, G., Kawazoe, Y., Jena, P.: Phys. Rev. B 77, 205411 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    Gacic, M., Jakob, G., Herbort, C., Adrian, H., Tietze, T., Brück, S., Goering, E.: Phys. Rev. B 75, 205206 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    Akai, H.: MACHIKANEYAMA2002v08. Department of Physics, Graduate School of Science, Osaka University, Japan (akai@phys.sci.osaka-u.ac.jp) Google Scholar
  8. 8.
    Koepernik, K., Eschrig, H.: Phys. Rev. B 59, 1743 (1999). http://www.fplo.de ADSCrossRefGoogle Scholar
  9. 9.
    Jaffe, J.E., Snyder, J.A., Lin, Z., Hess, A.C.: Phys. Rev. B, Condens. Matter 62, 1660 (2000) ADSCrossRefGoogle Scholar
  10. 10.
    Mouruzzi, V.L., Janak, J.F., Williams, A.R.: Calculated Properties of Metals. Pergramon, New York (1998) Google Scholar
  11. 11.
    Jaffe, J.E., Hess, A.C.: Phys. Rev. B, Condens. Matter 248, 7903 (1993) ADSCrossRefGoogle Scholar
  12. 12.
    Weast, R.C.: CRC Handbook of Chemistry and Physics, 58th edn. CRC Press, Boca Raton (1997) Google Scholar
  13. 13.
    Kisi, E., Elcombe, M.M.: Acta Crystallogr., C Cryst. Struct. Commun. C45, 1867 (1989) CrossRefGoogle Scholar
  14. 14.
    Khalid, M., Ziese, M., Setzer, A., Esquinazi, P., Lorenz, M., Hochmuth, H., Grundmann, M., Spemann, D., Butz, T.: Phys. Rev. B 80, 035331 (2009) 1997 ADSCrossRefGoogle Scholar
  15. 15.
    Mounkachi, O., Benyoussef, A., El Kenz, A., Saidi, E.H., Hlil, E.K.: J. Appl. Phys. 106, 093905 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    Sato, K., Katayama-Yoshida, H.: P.H. Dederichs ISIR, Osaka University, 567-0047 Osaka, Japan and IFF, Research Center Julich, D-52425 Julich, Germany Google Scholar
  17. 17.
    Janotti, A., Van de Walle, C.G.: J. Cryst. Growth 287, 58–65 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    Lin, B., Fu, Z., Jia, Y.: Appl. Phys. Lett. 79, 7 (2001) CrossRefGoogle Scholar
  19. 19.
    Rakhesh, V., Bushiri, M.J., Vaidyan, V.K.: J. Optoelectron. Adv. Mater. 9(12), 3740–3742 (2007) Google Scholar
  20. 20.
    Yi, J.B., Lim, C.C., Xing, G.Z., et al.: Phys. Rev. Lett. 104, 137201 (2010) ADSCrossRefGoogle Scholar
  21. 21.
    Mahan, G.D.: J. Appl. Phys. 54, 3825 (1983) ADSCrossRefGoogle Scholar
  22. 22.
    Look, D.C., Coskun, C., Claflin, B., Farlow, G.C.: Physica B 340–342 (2003) Google Scholar
  23. 23.
    Kröger, F.A.: The Chemistry of Imperfect Crystals, 2nd edn., vol. 2. North-Holland, Amsterdam (1974) Google Scholar
  24. 24.
    McCluskey, M.D., Jokela, S.J.: J. Appl. Phys. 106, 071101 (2009) ADSCrossRefGoogle Scholar
  25. 25.
    Hausmann, A., Tuerle, W.: Z. Phys. 259, 189 (1973) ADSCrossRefGoogle Scholar
  26. 26.
    Hoffmann, K., Hahn, D.: Phys. Status Solidi A 24, 637 (1974) ADSCrossRefGoogle Scholar
  27. 27.
    Utsch, B., Hausmann, A.: Z. Phys. B 21, 27 (1975) ADSCrossRefGoogle Scholar
  28. 28.
    Hausmann, A., Utsch, B.: Z. Phys. B 21, 217 (1975) ADSCrossRefGoogle Scholar
  29. 29.
    Hagemark, K.I.: J. Solid State Chem. 16, 293 (1976) ADSCrossRefGoogle Scholar
  30. 30.
    Neumann, G.: In: Kaldis, E. (ed.) Current Topics in Materials Science, vol. 7, p. 152. North Holland, Amsterdam (1981) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • B. Khalil
    • 1
  • H. Labrim
    • 2
  • O. Mounkachi
    • 3
  • B. Belhorma
    • 2
  • A. Benyoussef
    • 1
    • 3
    • 4
  • A. El Kenz
    • 1
  • E. Ntsoenzok
    • 5
  1. 1.LMPHE (URAC 12), Faculté des SciencesUniversité Mohammed V-AgdalRabatMorocco
  2. 2.Centre National de l’Energie, des Sciences et des Techniques Nucléaires (CNESTEN)RabatMorocco
  3. 3.Institute of Nanomaterials and Nanotechnology, MAScIRRabatMorocco
  4. 4.Hassan II Academy of Science and TechnologyRabatMorocco
  5. 5.CEMHTI-CNRS, Site Cyclotron 3AOrléansFrance

Personalised recommendations