Journal of Superconductivity and Novel Magnetism

, Volume 25, Issue 2, pp 487–490 | Cite as

Direct Measurements of Magneto-caloric Effect of Gd5Si2Ge2 Alloys in Low Magnetic Field

  • Hong Zeng
  • Jiuxing Zhang
  • Chunjiang Kuang
  • Ming Yue
Original Paper


Direct measurements of the magneto-caloric effect of Gd5Si2Ge2 alloys under heat treatment conditions are investigated by measuring adiabatic temperature change (ΔT ad) in a magnetic field of 1.5 T using a homemade magnetocaloric effect measuring apparatus. The crystal structure, microstructure as well as the chemical composition of the alloys are measured using X-ray diffraction (XRD), scanning electron microscope (SEM) with energy dispersive X-ray Detector (EDX). It is found that the microstructure of the alloys could be fully homogenized and the impurities in the alloys could be remarkably removed via appropriate heat treatment. As a result, the maximum adiabatic temperature change (ΔT ad) of the alloy annealed at 1573 K increases by 105% from 1.9 to 3.9 K for a magnetic field change from 0 to 15 kOe when compared to the as arc-melted material, while the magnetic ordering temperature slightly reduced.


Gd5Si2Ge2 alloys Adiabatic temperature change (ΔTadMicrostructure Heat treatment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pecharsky, V.K., Gschneidner, K.A. Jr.: Magnetocaloric effect and magnetic refrigeration. J. Magn. Magn. Mater. 200, 44 (1999) ADSCrossRefGoogle Scholar
  2. 2.
    Pecharsky, V.K., Gschneidner, K.A., Tsokol, A.O.: Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    Pecharsky, V.K., Gschneidner, K.A.: Giant Magnetocaloric Effect in Gd5(Si2Ge2) Phys. Rev. Lett. 78, 4494 (1997) ADSCrossRefGoogle Scholar
  4. 4.
    Tegus, O., Bruck, E., Bushow, K.H.J., de Boer, R.F.: Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415, 150 (2002) ADSCrossRefGoogle Scholar
  5. 5.
    Pecharsky, V.K., Gschneidner, K.A. Jr.: Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from 20 to 290 K. Appl. Phys. Lett. 70, 3299 (1997) ADSCrossRefGoogle Scholar
  6. 6.
    Provenzano, V., Shapiro, A.J., Shull, R.D.: Reduction of hysteresis in the magnetic refrigerant Gd5Si2Ge2 by the addition of iron. Nature 429, 853 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    Pecharsky, V.K., Gschneidner, K.A. Jr.: Effect of alloying on the giant magnetocaloric effect of Gd5(Si2Ge2). J. Magn. Magn. Mater. 167, 179 (1997) ADSCrossRefGoogle Scholar
  8. 8.
    Prabahar, K., RajKumar, D.M., ManivelRaja, M., Chandrasekaran, V.: Phase analysis and magnetocaloric properties of Zr substituted Gd–Si–Ge alloys. J. Magn. Magn. Mater. 323, 1755 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    Zhuo, Y., Chahine, R., Bose, T.K.: Magnetic entropy change in the Ge-rich alloys Gd–Si–Ge. IEEE Trans. Magn. 39, 3358 (2003) ADSCrossRefGoogle Scholar
  10. 10.
    Pecharsky, A.O., Pecharsky, V.K., Gschneidner, K.A. Jr.: The giant magnetocaloric effect between 190 and 300 K in the Gd5SixGe4−x alloys for 1.4≤x≤2.2. J. Magn. Magn. Mater. 267, 60 (2003) ADSCrossRefGoogle Scholar
  11. 11.
    Han, M., Jiles, D.C., Lee, S.J., Snyder, J.E., Lograsso, T.A., Schlagel, D.L.: Angular dependence of the unusual first-order transition temperature in single-crystal Gd5(Si∼0.5Ge∼0.5)4. IEEE Trans. Magn. 39, 3151 (2003) ADSCrossRefGoogle Scholar
  12. 12.
    Ouyang, Z.W.: Griffiths-like behavior in Ge-rich magnetocaloric compounds Gd5(SixGe1−x)4. J. Appl. Phys. 108, 033907 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    Huang, J.H., Qiu, J.F., Liu, J.R., Jin, P.Y., Xu, L.Z., Zhang, J.X.: A direct measurement setup for magnetocaloric effect. In: First International Conference on Magnetic Refrigeration at Room Temperature, Switzerland, pp. 179–181 (2005) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hong Zeng
    • 1
  • Jiuxing Zhang
    • 2
  • Chunjiang Kuang
    • 1
  • Ming Yue
    • 2
  1. 1.Advance Technology & Materials Co., LtdChina Iron & Steel Research Institute GroupBeijingP.R. China
  2. 2.The Key Laboratory of Advanced Functional Materials, Ministry of EducationBeijing University of TechnologyBeijingP.R. China

Personalised recommendations