Skip to main content
Log in

Ion Beam Analysis and Normal-State Conduction Mechanisms for (Bi, Pb)-2223 and (Tl, Pb)/Sr-1212 Superconducting Phases Substituted by Ruthenium

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Superconducting samples of type Bi1.8Pb0.4Sr2Ca2.1Cu3−x Ru x O10+δ , (Bi, Pb)-2223, with 0.0≤x≤0.4 and type Tl0.5Pb0.5Sr1.6Ba0.4CaCu2−x Ru x O7−δ , (Tl, Pb)/Sr-1212, with 0.0≤x≤0.525 were synthesized using the standard solid-state reaction technique. The lattice parameters and the surface morphology for these samples were determined using X-ray powder diffraction (XRD) and scanning electron microscope (SEM) measurements, respectively. All element-contents of the samples prepared were estimated from the electron dispersive X-ray (EDX) technique, and their results were compared with those obtained from particle-induced X-ray emission (PIXE). In addition, the oxygen-content was determined using elastic Rutherford backscattering spectroscopy (RBS) technique at 3 MeV proton beam. The superconducting transition temperature T c and the hole carrier concentration P were determined from the electrical resistivity measurement. The data of both T c and P for Bi1.8Pb0.4Sr2Ca2.1Cu3−x Ru x O10+δ and Tl0.5Pb0.5Sr1.6Ba0.4CaCu2−x Ru x O7−δ phases increased up to x=0.05 and 0.075, respectively and then they decreased as x increased. The superconductivity was completely destroyed around x=0.4 and 0.525 for (Bi, Pb)-2223 and (Tl, Pb)/Sr-1212 phases, respectively. The normal-state electrical resistivity data were analyzed using the two and three dimensional variable range hopping (2D-VRH and 3D-VRH) and the Coulomb gab (CG).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cyrot, M., Pavuna, D.: Introduction to Superconductivity and High-T c Materials, p. 249. World Scientific, Singapore (1995)

    Google Scholar 

  2. Blatter, G., Feigelman, M.V., Ceshkenbein, V.B., Larkin, A.I., Vinokur, V.M.: Rev. Mod. Phys. 6, 1125 (1994)

    Article  ADS  Google Scholar 

  3. Guo, Y.C., Horvat, J., Liu, H.K., Dou, S.X.: Physica C 300, 38 (1998)

    Article  ADS  Google Scholar 

  4. Lao, J.Y., Wang, J.H., Wang, D.Z., Yang, S.X., Tu, Y., Wen, J.G., Wu, H.L., Ren, Z.F., Verebelyi, D.T., Paranthaman, M., Aytug, T., Christen, D.K., Bhattacharya, R.N., Blaugher, R.D.: Supercond. Sci. Technol. 13, 173 (2000)

    Article  ADS  Google Scholar 

  5. Kim, D.H., Gray, K.E., Kampwirth, R.T., Smith, J.C.: Physica C 177, 431 (1991)

    Article  ADS  Google Scholar 

  6. Martin, C., Provost, J., Bourgault, D., Domengès, B., Michel, C., Hervieu, M., Raveau, B.: Physica C 157, 460 (1989)

    Article  ADS  Google Scholar 

  7. Maignan, A., Martin, C., Hardy, V., Simon, Ch.: Physica C 228, 323 (1994)

    Article  ADS  Google Scholar 

  8. Chen, P., Bayya, S.S., Sriram, D., Snyder, R.L.: Appl. Supercond. 3, 139 (1995)

    Article  Google Scholar 

  9. Wang, N.L., Ziaei, M., Clayman, B.P., Gu, G.D.: Physica C 341, 2227 (2000)

    Article  Google Scholar 

  10. Shi, D., Boley, M.S., Whelp, U., Chen, J.G., Liao, Y.: Phys. Rev. B 40, 5255 (1989)

    Article  ADS  Google Scholar 

  11. Shakeripour, H., Akhavan, M.: Supercond. Sci. Technol. 14, 234 (2001)

    Article  ADS  Google Scholar 

  12. Roumié, M., Awad, R., Ibrahim, I.H., Zein, A., Zahraman, K., Nsouli, B.: Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 266, 133 (2008)

    Article  ADS  Google Scholar 

  13. Abou-Aly, A.I., Mohammed, N.H., Roumié, M., El Khatib, A., Awad, R., Nour El Dein, S.A.: J. Supercond. Nov. Magn. 22, 495 (2009)

    Article  Google Scholar 

  14. Mohammed, N.H., Roumié, M., Motaweh, H.A., Awad, R., El-Said Bakeer, D., Nsouli, B.: J. Supercond. Nov. Magn. 23, 465 (2010)

    Article  Google Scholar 

  15. Mohammadizadah, M.R., Akhavan, M.: Eur. J. B 42, 321 (2004)

    Article  ADS  Google Scholar 

  16. Quitmann, C., Andrich, D., Jarchow, C., Fleuster, M., Beschoten, B., Guntherodt, G., Moshchalkov, V.V., Mante, G., Manzke, R.: Phys. Rev. B 46, 11813 (1992)

    Article  ADS  Google Scholar 

  17. Covington, M., Greene, L.H.: Phys. Rev. B 62, 12440 (2000)

    Article  ADS  Google Scholar 

  18. Takano, Y., Takayanagi, S., Ogawa, S., Yamadaya, T., Mori, N.: Solid State Commun. 103, 215 (1997)

    Article  ADS  Google Scholar 

  19. Jiang, W., Peng, J.L., Hamilton, J.J., Greene, R.L.: Phys. Rev. B 49, 690 (1994)

    Article  ADS  Google Scholar 

  20. Abou-Aly, A.I., Mahmoud, S.A., Awad, R., Barakat, M.ME.: J. Supercond. Nov. Magn. 23, 1575 (2010)

    Article  Google Scholar 

  21. Roumié, M., Nsouli, B., Zahraman, K., Reslan, A.: Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 219–220, 389 (2004)

    Article  Google Scholar 

  22. Harrison, J.F., Eldred, R.A.: Adv. X-ray Anal. 17, 560 (1973)

    Google Scholar 

  23. Nejedly, Z., Campbell, J.L., Gama, S.: Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 219–220, 136 (2004)

    Article  Google Scholar 

  24. Maxwell, J.A., Teesdale, W.J., Campbell, J.A.: Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 95, 407 (1995)

    Article  ADS  Google Scholar 

  25. Mayer, M.: SIMNRA User’s guide. Report IPP 9/113, Max-Planck Institut für Plasmaphysik, Garching, Germany (1997)

  26. Lebbou, K., Cohen-Adad, M.Th., Abraham, R., Trosset, S., Gladyshevskii, R.E., Flükiger, R., Galez, P., Schulz, G.W., Weber, H.W., Couach, M.: Physica C 297, 201 (1998)

    Article  ADS  Google Scholar 

  27. Kandyel, E., Sekkina, M.A., Dawoud, M.A.T., Bohnam, M.Y.: Solid State Commun. 135, 214 (2005)

    Article  ADS  Google Scholar 

  28. Liu, R.S., Zhou, W., Janes, R., Edwards, P.P.: Solid State Commun. 76, 1265 (1990)

    Google Scholar 

  29. Xiong, Y.M., Li, L., Luo, X.G., Zhang, H.T., Wang, C.H., Li, S.Y., Chen, X.H.: J. Phys., Condens. Matter 15, 1693 (2003)

    Article  ADS  Google Scholar 

  30. Ghattas, A., Annabi, M., Zouaoui, M., Ben Azzouz, F., Ben Salem, M.: Physica C 468, 31 (2008)

    Article  ADS  Google Scholar 

  31. Hamadneh, I., Agil, A., Yahya, A.K., Halim, S.A.: Physica C 463–465, 207 (2007)

    Article  Google Scholar 

  32. Yahya, A.K., Abdullah, W.F., Imad, H., Jumali, M.H.: Physica C 463–465, 474 (2007)

    Article  Google Scholar 

  33. Gurbich, A.F.: Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 129, 311 (1997)

    Article  ADS  Google Scholar 

  34. Ramos, A.R., Paul, A., Rijniers, L., da Silva, M.F., Soares, J.C.: Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 190, 95 (2002)

    Article  ADS  Google Scholar 

  35. Abou-Aly, A.I., Ibrahim, I.H., Awad, R., El-Harizy, A., Khalaf, A.: J. Supercond. Nov. Magn. 23, 1325 (2010)

    Article  Google Scholar 

  36. Koo, J.H., Cho, G.: J. Phys., Condens. Matter 15, L729 (2003)

    Article  ADS  Google Scholar 

  37. Singh, S., Khan, D.C.: Physica C 222, 233 (1994)

    Article  ADS  Google Scholar 

  38. Eskes, H., Sawatzky, G.A.: Phys. Rev. Lett. 61, 1415 (1988)

    Article  ADS  Google Scholar 

  39. Awad, R., Abou-Aly, A.I., Ibrahim, I.H., Abddeen, W.: Solid State Commun. 146, 92 (2008)

    Article  ADS  Google Scholar 

  40. Yasuoka, H., Kakihana, M., Mazaki, H.: Physica C 185–189, 803 (1991)

    Article  Google Scholar 

  41. Abrikosov, A., Gor’kov, L.P.: Sov. Phys. JETP 12, 1243 (1961)

    Google Scholar 

  42. Vélez, M., Cyrille, M.C., Kim, S., Vicent, J.L., Schuller, I.K.: Phys. Rev. B 59, 14659 (1999)

    Article  ADS  Google Scholar 

  43. Presland, M.R., Tallon, J.L., Buckley, R.G., Liu, R.S., Flower, N.E.: Physica C 176, 95 (1991)

    Article  ADS  Google Scholar 

  44. Shklovskii, B.I., Efros, A.L.: Electronic Properties of Doped Semiconductors, vol. 45, Springer, Berlin (1984)

    Google Scholar 

  45. Yamani, Z., Akhavan, M.: Solid State Commun. 107, 197 (1998)

    Article  ADS  Google Scholar 

  46. Mazaheri, M., Mofakham, S., Akhavan, M.: Supercond. Sci. Technol. 21, 095006 (2008)

    Article  ADS  Google Scholar 

  47. Osquiguil, E.J., Cival, L., Decca, R., De la Cruz, F.: Phys. Rev. B 38, 2840 (1988)

    Article  ADS  Google Scholar 

  48. Mott, N.F., Davis, E.A.: Electronic Processes in Noncrystalline Materials, 2nd edn. Clarendon, Oxford (1979)

    Google Scholar 

  49. Mohammadizadeh, M.R., Akhavan, M.: Eur. Phys. J. B 33, 381 (2003)

    Article  ADS  Google Scholar 

  50. Efros, A.L., Shklovskii, B.I.: J. Phys. C 8, L49 (1975)

    Article  ADS  Google Scholar 

  51. Quitmann, C., Fleuster, M., Jarchow, C., Andrich, D., Paulose, P.L., Güntherodt, G.: Physica C 185–189, 1337 (1991)

    Article  Google Scholar 

  52. Kariminezhad, M., Akhavan, M.: Eur. Phys. J. B 47, 47 (2005)

    Article  ADS  Google Scholar 

  53. Jung, W.-H.: Physica B 304, 75 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Awad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awad, R., Roumié, M., Abou-Aly, A.I. et al. Ion Beam Analysis and Normal-State Conduction Mechanisms for (Bi, Pb)-2223 and (Tl, Pb)/Sr-1212 Superconducting Phases Substituted by Ruthenium. J Supercond Nov Magn 25, 273–291 (2012). https://doi.org/10.1007/s10948-011-1296-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-011-1296-0

Keywords

Navigation