Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 25, Issue 2, pp 273–291 | Cite as

Ion Beam Analysis and Normal-State Conduction Mechanisms for (Bi, Pb)-2223 and (Tl, Pb)/Sr-1212 Superconducting Phases Substituted by Ruthenium

  • R. Awad
  • M. Roumié
  • A. I. Abou-Aly
  • S. A. Mahmoud
  • M. M. Barakat
Original Paper

Abstract

Superconducting samples of type Bi1.8Pb0.4Sr2Ca2.1Cu3−x Ru x O10+δ , (Bi, Pb)-2223, with 0.0≤x≤0.4 and type Tl0.5Pb0.5Sr1.6Ba0.4CaCu2−x Ru x O7−δ , (Tl, Pb)/Sr-1212, with 0.0≤x≤0.525 were synthesized using the standard solid-state reaction technique. The lattice parameters and the surface morphology for these samples were determined using X-ray powder diffraction (XRD) and scanning electron microscope (SEM) measurements, respectively. All element-contents of the samples prepared were estimated from the electron dispersive X-ray (EDX) technique, and their results were compared with those obtained from particle-induced X-ray emission (PIXE). In addition, the oxygen-content was determined using elastic Rutherford backscattering spectroscopy (RBS) technique at 3 MeV proton beam. The superconducting transition temperature T c and the hole carrier concentration P were determined from the electrical resistivity measurement. The data of both T c and P for Bi1.8Pb0.4Sr2Ca2.1Cu3−x Ru x O10+δ and Tl0.5Pb0.5Sr1.6Ba0.4CaCu2−x Ru x O7−δ phases increased up to x=0.05 and 0.075, respectively and then they decreased as x increased. The superconductivity was completely destroyed around x=0.4 and 0.525 for (Bi, Pb)-2223 and (Tl, Pb)/Sr-1212 phases, respectively. The normal-state electrical resistivity data were analyzed using the two and three dimensional variable range hopping (2D-VRH and 3D-VRH) and the Coulomb gab (CG).

Keywords

Ru-content (Bi, Pb)-2223 (Tl, Pb)/Sr-1212 PIXE RBS Conduction mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cyrot, M., Pavuna, D.: Introduction to Superconductivity and High-T c Materials, p. 249. World Scientific, Singapore (1995) Google Scholar
  2. 2.
    Blatter, G., Feigelman, M.V., Ceshkenbein, V.B., Larkin, A.I., Vinokur, V.M.: Rev. Mod. Phys. 6, 1125 (1994) ADSCrossRefGoogle Scholar
  3. 3.
    Guo, Y.C., Horvat, J., Liu, H.K., Dou, S.X.: Physica C 300, 38 (1998) ADSCrossRefGoogle Scholar
  4. 4.
    Lao, J.Y., Wang, J.H., Wang, D.Z., Yang, S.X., Tu, Y., Wen, J.G., Wu, H.L., Ren, Z.F., Verebelyi, D.T., Paranthaman, M., Aytug, T., Christen, D.K., Bhattacharya, R.N., Blaugher, R.D.: Supercond. Sci. Technol. 13, 173 (2000) ADSCrossRefGoogle Scholar
  5. 5.
    Kim, D.H., Gray, K.E., Kampwirth, R.T., Smith, J.C.: Physica C 177, 431 (1991) ADSCrossRefGoogle Scholar
  6. 6.
    Martin, C., Provost, J., Bourgault, D., Domengès, B., Michel, C., Hervieu, M., Raveau, B.: Physica C 157, 460 (1989) ADSCrossRefGoogle Scholar
  7. 7.
    Maignan, A., Martin, C., Hardy, V., Simon, Ch.: Physica C 228, 323 (1994) ADSCrossRefGoogle Scholar
  8. 8.
    Chen, P., Bayya, S.S., Sriram, D., Snyder, R.L.: Appl. Supercond. 3, 139 (1995) CrossRefGoogle Scholar
  9. 9.
    Wang, N.L., Ziaei, M., Clayman, B.P., Gu, G.D.: Physica C 341, 2227 (2000) CrossRefGoogle Scholar
  10. 10.
    Shi, D., Boley, M.S., Whelp, U., Chen, J.G., Liao, Y.: Phys. Rev. B 40, 5255 (1989) ADSCrossRefGoogle Scholar
  11. 11.
    Shakeripour, H., Akhavan, M.: Supercond. Sci. Technol. 14, 234 (2001) ADSCrossRefGoogle Scholar
  12. 12.
    Roumié, M., Awad, R., Ibrahim, I.H., Zein, A., Zahraman, K., Nsouli, B.: Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 266, 133 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    Abou-Aly, A.I., Mohammed, N.H., Roumié, M., El Khatib, A., Awad, R., Nour El Dein, S.A.: J. Supercond. Nov. Magn. 22, 495 (2009) CrossRefGoogle Scholar
  14. 14.
    Mohammed, N.H., Roumié, M., Motaweh, H.A., Awad, R., El-Said Bakeer, D., Nsouli, B.: J. Supercond. Nov. Magn. 23, 465 (2010) CrossRefGoogle Scholar
  15. 15.
    Mohammadizadah, M.R., Akhavan, M.: Eur. J. B 42, 321 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    Quitmann, C., Andrich, D., Jarchow, C., Fleuster, M., Beschoten, B., Guntherodt, G., Moshchalkov, V.V., Mante, G., Manzke, R.: Phys. Rev. B 46, 11813 (1992) ADSCrossRefGoogle Scholar
  17. 17.
    Covington, M., Greene, L.H.: Phys. Rev. B 62, 12440 (2000) ADSCrossRefGoogle Scholar
  18. 18.
    Takano, Y., Takayanagi, S., Ogawa, S., Yamadaya, T., Mori, N.: Solid State Commun. 103, 215 (1997) ADSCrossRefGoogle Scholar
  19. 19.
    Jiang, W., Peng, J.L., Hamilton, J.J., Greene, R.L.: Phys. Rev. B 49, 690 (1994) ADSCrossRefGoogle Scholar
  20. 20.
    Abou-Aly, A.I., Mahmoud, S.A., Awad, R., Barakat, M.ME.: J. Supercond. Nov. Magn. 23, 1575 (2010) CrossRefGoogle Scholar
  21. 21.
    Roumié, M., Nsouli, B., Zahraman, K., Reslan, A.: Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 219–220, 389 (2004) CrossRefGoogle Scholar
  22. 22.
    Harrison, J.F., Eldred, R.A.: Adv. X-ray Anal. 17, 560 (1973) Google Scholar
  23. 23.
    Nejedly, Z., Campbell, J.L., Gama, S.: Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 219–220, 136 (2004) CrossRefGoogle Scholar
  24. 24.
    Maxwell, J.A., Teesdale, W.J., Campbell, J.A.: Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 95, 407 (1995) ADSCrossRefGoogle Scholar
  25. 25.
    Mayer, M.: SIMNRA User’s guide. Report IPP 9/113, Max-Planck Institut für Plasmaphysik, Garching, Germany (1997) Google Scholar
  26. 26.
    Lebbou, K., Cohen-Adad, M.Th., Abraham, R., Trosset, S., Gladyshevskii, R.E., Flükiger, R., Galez, P., Schulz, G.W., Weber, H.W., Couach, M.: Physica C 297, 201 (1998) ADSCrossRefGoogle Scholar
  27. 27.
    Kandyel, E., Sekkina, M.A., Dawoud, M.A.T., Bohnam, M.Y.: Solid State Commun. 135, 214 (2005) ADSCrossRefGoogle Scholar
  28. 28.
    Liu, R.S., Zhou, W., Janes, R., Edwards, P.P.: Solid State Commun. 76, 1265 (1990) Google Scholar
  29. 29.
    Xiong, Y.M., Li, L., Luo, X.G., Zhang, H.T., Wang, C.H., Li, S.Y., Chen, X.H.: J. Phys., Condens. Matter 15, 1693 (2003) ADSCrossRefGoogle Scholar
  30. 30.
    Ghattas, A., Annabi, M., Zouaoui, M., Ben Azzouz, F., Ben Salem, M.: Physica C 468, 31 (2008) ADSCrossRefGoogle Scholar
  31. 31.
    Hamadneh, I., Agil, A., Yahya, A.K., Halim, S.A.: Physica C 463–465, 207 (2007) CrossRefGoogle Scholar
  32. 32.
    Yahya, A.K., Abdullah, W.F., Imad, H., Jumali, M.H.: Physica C 463–465, 474 (2007) CrossRefGoogle Scholar
  33. 33.
    Gurbich, A.F.: Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 129, 311 (1997) ADSCrossRefGoogle Scholar
  34. 34.
    Ramos, A.R., Paul, A., Rijniers, L., da Silva, M.F., Soares, J.C.: Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 190, 95 (2002) ADSCrossRefGoogle Scholar
  35. 35.
    Abou-Aly, A.I., Ibrahim, I.H., Awad, R., El-Harizy, A., Khalaf, A.: J. Supercond. Nov. Magn. 23, 1325 (2010) CrossRefGoogle Scholar
  36. 36.
    Koo, J.H., Cho, G.: J. Phys., Condens. Matter 15, L729 (2003) ADSCrossRefGoogle Scholar
  37. 37.
    Singh, S., Khan, D.C.: Physica C 222, 233 (1994) ADSCrossRefGoogle Scholar
  38. 38.
    Eskes, H., Sawatzky, G.A.: Phys. Rev. Lett. 61, 1415 (1988) ADSCrossRefGoogle Scholar
  39. 39.
    Awad, R., Abou-Aly, A.I., Ibrahim, I.H., Abddeen, W.: Solid State Commun. 146, 92 (2008) ADSCrossRefGoogle Scholar
  40. 40.
    Yasuoka, H., Kakihana, M., Mazaki, H.: Physica C 185–189, 803 (1991) CrossRefGoogle Scholar
  41. 41.
    Abrikosov, A., Gor’kov, L.P.: Sov. Phys. JETP 12, 1243 (1961) Google Scholar
  42. 42.
    Vélez, M., Cyrille, M.C., Kim, S., Vicent, J.L., Schuller, I.K.: Phys. Rev. B 59, 14659 (1999) ADSCrossRefGoogle Scholar
  43. 43.
    Presland, M.R., Tallon, J.L., Buckley, R.G., Liu, R.S., Flower, N.E.: Physica C 176, 95 (1991) ADSCrossRefGoogle Scholar
  44. 44.
    Shklovskii, B.I., Efros, A.L.: Electronic Properties of Doped Semiconductors, vol. 45, Springer, Berlin (1984) Google Scholar
  45. 45.
    Yamani, Z., Akhavan, M.: Solid State Commun. 107, 197 (1998) ADSCrossRefGoogle Scholar
  46. 46.
    Mazaheri, M., Mofakham, S., Akhavan, M.: Supercond. Sci. Technol. 21, 095006 (2008) ADSCrossRefGoogle Scholar
  47. 47.
    Osquiguil, E.J., Cival, L., Decca, R., De la Cruz, F.: Phys. Rev. B 38, 2840 (1988) ADSCrossRefGoogle Scholar
  48. 48.
    Mott, N.F., Davis, E.A.: Electronic Processes in Noncrystalline Materials, 2nd edn. Clarendon, Oxford (1979) Google Scholar
  49. 49.
    Mohammadizadeh, M.R., Akhavan, M.: Eur. Phys. J. B 33, 381 (2003) ADSCrossRefGoogle Scholar
  50. 50.
    Efros, A.L., Shklovskii, B.I.: J. Phys. C 8, L49 (1975) ADSCrossRefGoogle Scholar
  51. 51.
    Quitmann, C., Fleuster, M., Jarchow, C., Andrich, D., Paulose, P.L., Güntherodt, G.: Physica C 185–189, 1337 (1991) CrossRefGoogle Scholar
  52. 52.
    Kariminezhad, M., Akhavan, M.: Eur. Phys. J. B 47, 47 (2005) ADSCrossRefGoogle Scholar
  53. 53.
    Jung, W.-H.: Physica B 304, 75 (2001) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • R. Awad
    • 1
  • M. Roumié
    • 2
  • A. I. Abou-Aly
    • 1
  • S. A. Mahmoud
    • 1
  • M. M. Barakat
    • 1
  1. 1.Physics Department, Faculty of ScienceAlexandria UniversityAlexandriaEgypt
  2. 2.Accelerator Laboratory, Lebanese Atomic Energy CommissionNational Council for Scientific ResearchBeirutLebanon

Personalised recommendations