Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 24, Issue 8, pp 2203–2210 | Cite as

Superconducting State Parameters of 4d-Transition Metals Superconductors

  • Aditya M. Vora
Original Paper

Abstract

The theoretical study of the superconducting state parameters (SSP) namely electron–phonon coupling strength λ, Coulomb pseudopotential μ , transition temperature T C , isotope effect exponent α, and effective interaction strength N O V of 4d-transition metals superconductors have been made extensively in the present work using a model potential formalism for the first time. In the present computation, the use of pseudo-alloy-atom model (PAA) is proposed and found successful. A considerable influence of various exchange and correlation functions on λ and μ is found from the present study. The present results of the SSP are found in qualitative agreement with the available experimental data wherever exist.

Keywords

Pseudopotential Superconducting state parameters 4d-transition metals superconductors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Narlikar, A.V., Ekbote, S.N.: Superconductivity and Superconducting Materials. South Asian Publishers, New Delhi (1983) Google Scholar
  2. 2.
    Allen, P.B.: In: Poole, C.P. Jr. (ed.) Handbook of Superconductivity, p. 478. Academic Press, New York (1999) Google Scholar
  3. 3.
    Vora, A.M.: Armen. J. Phys. 2, 213 (2009) Google Scholar
  4. 4.
    Vora, A.M.: Moroc. J. Condens. Matter 10, 15 (2008) Google Scholar
  5. 5.
    Vora, A.M.: Sci. Technol. Adv. Mater. 9, 025017 (2008) CrossRefGoogle Scholar
  6. 6.
    Vora, A.M.: Physica C 468, 937 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    Vora, A.M.: Physica C 468, 2292 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    Vora, A.M.: Chin. Phys. Lett. 27, 026102 (2010) CrossRefGoogle Scholar
  9. 9.
    Vora, A.M.: J. Non-Cryst. Solids 357, 2039 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    Vora, A.M.: J. Supercond. Nov. Magn. (2011). doi: 10.1007/s10948-011-1170-0 Google Scholar
  11. 11.
    Vora, A.M.: Physica C 470, 475 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    Vora, A.M.: Latv. J. Phys. Tech. Sci. 48, 42 (2011) CrossRefGoogle Scholar
  13. 13.
    Vora, A.M.: Afr. Phys. Rev 4, 95 (2010) Google Scholar
  14. 14.
    Singh, V., Khan, H., Sharma, K.S.: Indian J. Pure Appl. Phys. 32, 915 (1994) Google Scholar
  15. 15.
    Dynes, R.C.: Phys. Rev. B 2, 644 (1970) ADSCrossRefGoogle Scholar
  16. 16.
    Ashcroft, N.W.: Phys. Lett. 23, 48 (1966) ADSCrossRefGoogle Scholar
  17. 17.
    Harrison, W.A.: Elementary Electronic Structure. World Scientific, Singapore (1999) Google Scholar
  18. 18.
    Taylor, R.: J. Phys. F, Met. Phys. 8, 1699 (1978) ADSCrossRefGoogle Scholar
  19. 19.
    Ichimaru, S., Utsumi, K.: Phys. Rev. B 24, 7386 (1981) ADSCrossRefGoogle Scholar
  20. 20.
    Farid, B., Heine, V., Engel, G., Robertson, I.J.: Phys. Rev. B 48, 11602 (1993) ADSCrossRefGoogle Scholar
  21. 21.
    Sarkar, A., Sen, D., Haldar, H., Roy, D.: Mod. Phys. Lett. B 12, 639 (1998) ADSCrossRefGoogle Scholar
  22. 22.
    Butler, W.H.: Phys. Rev. B 15, 5267 (1977) ADSCrossRefGoogle Scholar
  23. 23.
    McMillan, W.L.: Phys. Rev. 167, 331 (1968) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Parmeshwari 165Bhuj–KutchIndia
  2. 2.Humanities and Social Science DepartmentS.T.B.S. College of Diploma EngineeringSuratIndia

Personalised recommendations