Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 24, Issue 6, pp 1967–1970 | Cite as

Influence of Thickness on the Levitation Force of High-T c Bulk over a Permanent Magnetic Guideway with Numerical Method

  • Yiyun Lu
  • Xucan Bai
  • Yunwang Ge
  • Jiasu Wang
Original Paper

Abstract

Levitation forces of a high temperature superconductor (HTS) bulk with a different thickness over a permanent magnet railway (PMR) is studied mathematically. Several cylindrical models of HTS bulk with a diameter of 30 mm and a different thickness over a PMR are researched by the magnetic field vector method (H-method). A 3D-modeling numerical method using finite element method (FEM) is used to simulate the electromagnetic behavior of the models. The thickness of the HTS bulk increases with 1 mm from 4 mm to 15 mm. The simulation results show that the thickness of the HTS bulk and the minigap between the bottom surface of the bulk and the top surface of the PMR have much influence on the levitation forces. With a certain applied magnetic field, there is a certain thickness value of the bulk, which means the levitation force will not increase obviously with the increase of the thickness while the thickness larges the value.

Keywords

Thickness Levitation force HTS Numerical method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Murakami, M.: Int. J. Appl. Ceram. Technol. 4, 225 (2007) CrossRefGoogle Scholar
  2. 2.
    Hull, J.R.: Supercond. Sci. Technol. 13, R1 (2000) ADSCrossRefGoogle Scholar
  3. 3.
    Wang, J.S., et al.: Physica C 809, 378–381 (2002) Google Scholar
  4. 4.
    Schultz, L., et al.: IEEE Trans. Appl. Supercond. 15, 2301 (2005) CrossRefGoogle Scholar
  5. 5.
    Deng, Z., et al.: IEEE Trans. Appl. Supercond. 19, 2137 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    Wang, J.S., Wang, S.Y., Zheng, J.: IEEE Trans. Appl. Supercond. 19, 2142 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    Deng, Z.G., et al.: Mater. Sci. Forum 1941, 546–549 (2007) Google Scholar
  8. 8.
    Wang, S.Y., et al.: IEEE Trans. Appl. Supercond. 13, 2134 (2003) CrossRefGoogle Scholar
  9. 9.
    Zheng, J., et al.: Physica C 463, 1356–1360 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    Wang, S.Y., et al.: IEEE Trans. Appl. Supercond. 17, 2067 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    Qin, Y., Lu, Y., et al.: J. Supercond. Nov. Magn. 22, 511–516 (2009) CrossRefGoogle Scholar
  12. 12.
    Ren, Z., Wang, J., et al.: Physica C 384, 159–162 (2003) ADSCrossRefGoogle Scholar
  13. 13.
    Lu, Y., Wang, J., et al.: J. Supercond. Nov. Magn. 21, 467–472 (2008) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Luoyang Institute of Science and TechnologyLuoyangP.R. China
  2. 2.Applied Superconductivity LaboratorySouthwest Jiaotong UniversityChengduP.R. China

Personalised recommendations