Advertisement

Effect of Firing Temperature on the Structure and Superconducting Properties of YBa2Cu3O7−x Films

  • Renzhong Xue
  • Tao Li
  • Zhenping Chen
  • Yuncai Xue
  • Junhong Hao
  • Yuanqing Chen
Original Paper

Abstract

YBa2Cu3O7−x (YBCO) films were prepared on LaAlO3 single crystal substrate under various firing temperatures (750–800 °C) in the crystallization process by metalorganic deposition (MOD) method. The coating solution was made by mixing the fluorine-free precursor solution containing Y and Cu with Ba–fluorine precursor solution (Ba-TFA). The effect of firing temperature on the structure and superconducting properties of YBCO films was systematically investigated. The results indicated that YBCO-films were smooth, crack-free, exhibited good textures and retain high oxygen content according to the XRD and SEM images. Sample of YBCO-film fired at 780 °C showed highest superconducting properties including high critical transition temperature T c=89 K, sharp transition temperature ΔT c<1 K, and critical current density J c=2.8 MA cm−2, which are attributable to excellent in-plane textures and dense microstructures with good connectivity between the grains.

Keywords

TFA-MOD YBCO film Firing temperature Structure Superconducting properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shiohara, Y., Yoshizumi, M., Izumi, T., et al.: Supercond. Sci. Technol. 21, 34002 (2008) CrossRefGoogle Scholar
  2. 2.
    Tsukamoto, O., Enomoto, Y.: Physics C 392–396, 778 (2003) Google Scholar
  3. 3.
    Chen, M., Donzel, L., Lakner, M., et al.: J. Eur. Ceram. Soc. 24, 1815 (2004) CrossRefGoogle Scholar
  4. 4.
    Gupta, A., Jagannathan, R., Cooper, E.I., et al.: Appl. Phys. Lett. 52, 2077 (1988) ADSCrossRefGoogle Scholar
  5. 5.
    Araki, T., Yuasa, T., Kurosaki, H., Yamada, Y., et al.: Supercond. Sci. Technol. 15, L1 (2002) ADSCrossRefGoogle Scholar
  6. 6.
    Tokunaga, Y., Honjo, T., Izumi, T., et al.: Cryogenics 44, 817 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    Araki, T., Yamagiwa, K., Hirabayashi, I., et al.: Supercond. Sci. Technol. 14, L21 (2001) ADSCrossRefGoogle Scholar
  8. 8.
    Durrell, J.H., Rutter, N.A.: Supercond. Sci. Technol. 22, 013001 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    Arendt, P.N., Foltyn, S.R.: Mater. Res. Soc. Bull. 29, 543 (2004) CrossRefGoogle Scholar
  10. 10.
    Cai, Y.Q., Tang, C.Y., Sun, L.J., et al.: Cryst. Growth Des. 7, 1469 (2007) CrossRefGoogle Scholar
  11. 11.
    Singh, R.K., Kumar, D.: Mater. Sci. Eng., R Rep. 22, 113 (1998) CrossRefGoogle Scholar
  12. 12.
    Cai, Y.Q., Yao, X., Lai, Y.J.: J. Appl. Phys. 99, 113909 (2006) ADSCrossRefGoogle Scholar
  13. 13.
    Suenaga, M.: Physica C 378–381, 1045 (2002) CrossRefGoogle Scholar
  14. 14.
    Kato, T., Sasaki, H., Iwai, H., et al.: Physica C 426–431, 1033 (2005) CrossRefGoogle Scholar
  15. 15.
    Ramesh, R., Inam, A., Hwang, D.M., et al.: Appl. Phys. Lett. 58, 1557 (1991) ADSCrossRefGoogle Scholar
  16. 16.
    Yoshizumi, M., Seleznev, I., Cima, M.J.: Physics C 403, 191 (2004) ADSCrossRefGoogle Scholar
  17. 17.
    Demirel, A.I.: Supercond. Sci. Technol. 15, 923 (2002) ADSCrossRefGoogle Scholar
  18. 18.
    Shin, G.M., Ko, K.P., Song, K.J., et al.: Physica C 468, 1567 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    McIntyre, P.C., Cima, M.J.: J. Mater. Res. 9, 2778 (1994) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Renzhong Xue
    • 1
  • Tao Li
    • 1
  • Zhenping Chen
    • 1
  • Yuncai Xue
    • 1
  • Junhong Hao
    • 1
  • Yuanqing Chen
    • 2
  1. 1.Department of Technology and PhysicsZhengzhou University of Light IndustryZhengzhouChina
  2. 2.School of Material Science and EngineeringXi’an University of TechnologyXi’anChina

Personalised recommendations