Highly Transparent and Conductive Zn0.86Cd0.11In0.03O Thin Film Prepared by Pulsed Laser Deposition

  • B. J. Zheng
  • J. S. Lian
  • Q. Jiang
Original Paper


Zn0.86Cd0.11In0.03O alloy semiconductor film was deposited on quartz substrate by pulsed laser deposition technique. Cd is used to change the optical band gap and In is used to increase the carrier concentration of the ZnO film. XRD studies confirm that the structure of Zn0.86Cd0.11In0.03O is hexagonal wurtzite structure without CdO phase appeared. FE-SEM shows that the grain size of Zn0.86Cd0.11In0.03O film is smaller than that of ZnO. These films are highly transparent (∼85%) in visible region. Most importantly, the electrical properties of Zn0.86Cd0.11In0.03O film highly improved with In doped. It has low resistivity (4.42×10−3 Ω cm) and high carrier concentration (5.50×1019 cm−3) that enable this film a promising candidate for window layer in solar cells and other possible optoelectronic applications.


Zn0.86Cd0.11In0.03O film Pulse laser deposition Transparent conductor oxide Hall effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ma, X.L., Zhang, J., Lu, J.G., Ye, Z.Z.: Appl. Surf. Sci. 257, 1310 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    Peng, L.P., Fang, L., Yang, X.F., Huang, Q.L., Zhou, K., Wu, F., Kong, C.Y.: J. Supercond. Nov. Magn. 23, 881 (2010) CrossRefGoogle Scholar
  3. 3.
    Vijayalakshmi, S., Venkataraj, S., Jayavel, R.J.: Phys. D, Appl. Phys. 41, 245403 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    Wang, X.J., Buyanova, I.A., Chen, W.M., Izadifard, M., Rawal, S.: Appl. Phys. Lett. 89, 151909 (2006) ADSCrossRefGoogle Scholar
  5. 5.
    Tortosa, M., Mollar, M., Marı, B.: J. Cryst. Growth 304, 97 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    Li, G.M., Wang, X.C., Wang, Y.H., Shi, X.W., Yao, N., Zhang, B.L.: Physica E 40, 2649 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    Lorenz, M., Kaidashev, E.M., Wenckstern, H., Riede, V., Bundesmann, C., Spemann, D., Benndorf, G., Hochmuth, H., Rahm, A., Semmelhack, H.C., Grundmann, M.: Solid-State Electron. 47, 2205 (2003) ADSCrossRefGoogle Scholar
  8. 8.
    Yasuhiro, I., Hirokazu, K.: Appl. Surf. Sci. 169, 508 (2001) CrossRefGoogle Scholar
  9. 9.
    Fernandez, T., Jose, G., Mathew, S., Rejikumar, P.R., Unnikrishnan, N.V.: J. Sol-Gel Sci. Technol. 41, 163 (2007) CrossRefGoogle Scholar
  10. 10.
    Tan, S.T., Chen, B.J., Sun, X.W., Fan, W.J., Kwok, H.S., Zhang, X.H., Chua, S.J.: J. Appl. Phys. 98, 013505 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    Qadri, S.B., Yang, J.P., Skelton, E.F., Ratna, B.R.: Appl. Phys. Lett. 70, 1020 (1997) ADSCrossRefGoogle Scholar
  12. 12.
    Chen, M., Pei, Z.L., Sun, C., Wen, L.S., Wang, X.: J. Cryst. Growth 220, 254 (2000) ADSCrossRefGoogle Scholar
  13. 13.
    Pearton, S.J., Norton, D.P., Ip, K., Heo, Y.W., Steiner, T.: Prog. Mater. Sci. 50, 293 (2005) CrossRefGoogle Scholar
  14. 14.
    Bertrand, P.A.: J. Vac. Sci. Technol. 18, 28 (1981) ADSCrossRefGoogle Scholar
  15. 15.
    Hong, C.S., Park, H.H., Chang, H.J.: J. Electroceram. 22, 353 (2009) CrossRefGoogle Scholar
  16. 16.
    Subramanyam, T.K., Srinivasulu Naidu, B., Uthanna, S.: Appl. Surf. Sci. 529, 169 (2001) Google Scholar
  17. 17.
    Shinde, V.R., Gujar, T.P., Lokhande, C.D., Mane, R.S., Han, S.H.: Mater. Chem. Phys. 96, 326 (2006) CrossRefGoogle Scholar
  18. 18.
    Fan, X.M., Lian, J.S., Guo, Z.X., Jiang, Q.: Trans. Nonferr. Metal. Soc. 15, 519 (2005) Google Scholar
  19. 19.
    Burstein, E.: Phys. Rev. 93, 632 (1954) ADSCrossRefGoogle Scholar
  20. 20.
    Moss, T.S.: Proc. Phys. Soc. Lond. B 67, 775 (1954) ADSCrossRefGoogle Scholar
  21. 21.
    Kalusniak, S., Sadofev, S., Puls, J., Henneberger, F.: Laser Photonics Rev. 3, 233 (2009) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.The Key Lab of Automobile Materials, Ministry of Education, College of Materials Science and EngineeringJilin UniversityChangchunChina

Personalised recommendations