Retardation of the Magnetic Relaxation in High-Temperature Superconductors Near a Ferromagnet

  • B. M. Smolyak
  • G. V. Ermakov
  • M. S. Zakharov
Original Paper


The creep of a magnetic flux trapped in a bulk high-temperature superconductor has been studied. It has been found that the magnetic relaxation is retarded when the superconductor is placed near a ferromagnet. The value of the retardation effect depends on the sequence of magnetization and the approach of the superconductor to a ferromagnet. The magnetic relaxation is fully suppressed when a superconducting sample first is magnetized and then is brought close to a ferromagnet. An interpretation of this effect has been discussed. Being magnetized, a ferromagnet produces its own magnetic field. While penetrating into a disk sample through its planes, the ferromagnet field induces screening currents, which circulate oppositely to the current that arises upon trapping of the magnetic flux. As a result, the stability of the magnetic structure is sharply improved since opposite driving forces can act on different sections of the vortices.


High-Tc superconductors Trapped flux Magnetic relaxation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yeshurun, Y., Malozemoff, A.P., Shaulov, A.: Rev. Mod. Phys. 68, 911 (1996) CrossRefADSGoogle Scholar
  2. 2.
    Beasly, M.R., Labush, R., Webb, W.W.: Phys. Rev. B 181, 682 (1969) CrossRefADSGoogle Scholar
  3. 3.
    Kwasnitza, K., Widmer, Ch.: Physica C 184, 341 (1991) CrossRefADSGoogle Scholar
  4. 4.
    Kwasnitza, K., Widmer, Ch.: Cryogenics 33, 378 (1993) CrossRefGoogle Scholar
  5. 5.
    Smolyak, B.M., Perelshtein, G.N., Ermakov, G.V., Postrekhin, E.V.: Physica C 341–348, 1129 (2000) Google Scholar
  6. 6.
    Smolyak, B.M., Perelshtein, G.N., Ermakov, G.V.: Tech. Phys. Lett. (Russia) 27, 674 (2001) CrossRefADSGoogle Scholar
  7. 7.
    Smolyak, B.M., Perelshtein, G.N., Ermakov, G.V.: Cryogenics 42, 635 (2002) CrossRefADSGoogle Scholar
  8. 8.
    Fisher, L.M., Kalinov, A.V., Voloshin, I.F., Yampol’skii, V.A.: Phys. Rev. B 71, 140503 (2005) CrossRefADSGoogle Scholar
  9. 9.
    Smolyak, B.M., Perelshtein, G.N., Ermakov, G.V.: Tech. Phys. Lett. (Russia) 32, 98 (2006) CrossRefADSGoogle Scholar
  10. 10.
    Brandt, E.H.: Phys. Rev. B 54, 4246 (1996) CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Brandt, E.H.: Phys. Rev. B 58, 6506 (1998) CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Abulafia, Y., Shaulov, A., Wolfus, R., Prozorov, R., Burlachkov, L., Yeshurun, Y., Majer, D., Zeldov, E., Vinokur, V.M.: Phys. Rev. Lett. 75, 2404 (1995) CrossRefADSGoogle Scholar
  13. 13.
    Keller, C., Küpfer, H., Meier-Hirmer, R.: Cryogenics 30, 410 (1990) CrossRefGoogle Scholar
  14. 14.
    Helseth, L.E., Goa, P.E., Hauglin, H., Baziljevich, M., Johanson, T.H.: Phys. Rev. B 65, 132514 (2002) CrossRefADSGoogle Scholar
  15. 15.
    Garsia-Santiago, A., Sanchez, F., Valera, M., Tejada, J.: Appl. Phys. Lett. 77, 2900 (2000) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • B. M. Smolyak
    • 1
  • G. V. Ermakov
    • 1
  • M. S. Zakharov
    • 1
  1. 1.Institute of Thermal PhysicsUral Division RASEkaterinburgRussia

Personalised recommendations