Electrodeposited Cobalt Films: Alteration Caused by the Electrolyte pH

Original Paper


Cobalt (Co) films were electrodeposited on polycrystalline copper substrates at different pH values. It is observed that the crystal structure of the films converts from hexagonal close-packed (hcp) to a mixed phase of face centered cubic and hcp as the electrolyte pH decreases. The grain size calculated from the X-ray diffraction patterns decreases with the decrease of electrolyte pH. The surface of the films grown at a high pH is more uniform than that of the films grown at a low pH. The saturation magnetization and the coercivity decrease as the electrolyte pH decreases. The high coercivity value at high pH corresponds to the hcp crystal structure of the films as well as the large grain size of Co clusters. Magnetic measurements also reveal that the easy axis direction of magnetization is parallel to the film plane for all films since the higher remanent magnetization and lower saturation field are observed in parallel hysteresis loops.


Cobalt films Crystal structure Electrodeposition Magnetic properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kockar, H., Meydan, T.: Eur. Phys. J. Appl. Phys. 30, 185 (2005) CrossRefADSGoogle Scholar
  2. 2.
    Kockar, H.: J. Supercond.: Incorp. Nov. Magn. 17(4), 531 (2004) CrossRefGoogle Scholar
  3. 3.
    Alper, M., Kockar, H., Kuru, H., Meydan, T.: Sens. Actuators A 129, 184 (2006) CrossRefGoogle Scholar
  4. 4.
    Schwarzacher, W., Attenborough, K., Michel, A., Nabiyouni, G., Meier, J.P.: J. Magn. Magn. Mater. 165, 23 (1997) CrossRefADSGoogle Scholar
  5. 5.
    Alper, M., Schwarzacher, W., Lane, S.J.: J. Electrochem. Soc. 144, 2346 (1997) CrossRefGoogle Scholar
  6. 6.
    Kockar, H., Alper, M., Sahin, T., Karaagac, O.: J. Magn. Magn. Mater. 322, 1095 (2010) CrossRefADSGoogle Scholar
  7. 7.
    Nielsen, C.B., Horsewell, A., Østergard, M.J.L.: J. Appl. Electrochem. 27, 839 (1997) CrossRefGoogle Scholar
  8. 8.
    Nallet, P., Chassing, E., Walls, M.G., Hytch, M.J.: J. Appl. Phys. 79, 6884 (1996) CrossRefADSGoogle Scholar
  9. 9.
    Vicenzo, A., Cavallotti, P.L.: Electrochim. Acta 49, 4079 (2004) CrossRefGoogle Scholar
  10. 10.
    Cullity, B.D.: In: Elements of X-ray Diffraction, p. 105. Addison-Wesley, Reading (1978) Google Scholar
  11. 11.
    Takata, F.M., Sumodji, P.T.A.: Electrochim. Acta 52, 6089 (2007) CrossRefGoogle Scholar
  12. 12.
    Pane, S., Gomez, E., Valles, E.: J. Electroanal. Chem. 596, 87 (2006) CrossRefGoogle Scholar
  13. 13.
    Herzer, G.: IEEE Trans. Magn. 26(5), 1397 (1990) CrossRefADSGoogle Scholar
  14. 14.
    Vopsaroiu, M., Georgieva, M., Grundy, P.J., Fernandez, G.V., Manzoor, S., Thwaites, M.J., O’Grady, K.: J. App. Phys. 97, 10N303 (2005) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Physics Department, Science and Literature FacultyBalikesir UniversityBalikesirTurkey
  2. 2.Physics Department, Science and Literature FacultyUludag UniversityBursaTurkey

Personalised recommendations