Advertisement

The Effect of the Pinning Center Size on the Vortex Pinning by Embedded ZrO2 Nano-particles

  • Nahed Moutalbi
  • Asma Ouerghi
  • Ali M’chirgui
Original Paper

Abstract

The influence of pinning centers size on the superconducting properties was investigated. Through the addition of three batches of ZrO2 nano-particles with mean size of D 1=13 nm, D 2=21 nm, and D 3=85 nm, we have succeeded in incorporating effective artificial pinning centers within the YBCO matrix of the bulk superconductor. An enhancement in the flux pinning and an improvement in the critical current densities (transport critical current density J ct and magnetic critical current density J cm) were achieved. The results indicate that slight inclusions of ZrO2 can greatly enhance the flux pinning capability of samples. Comparative analyses of the critical current densities and the resulting pinning force F p for the three diameters have shown that pinning centers with finer size are much more efficient than those with a size larger than the coherence length ξ.

Keywords

Y-based cuprates ZrO2 Pinning Size effect and superconducting properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rao, K.V., Puzniac, R., Chen, D.X., et al.: Physica C 153, 347 (1988) ADSCrossRefGoogle Scholar
  2. 2.
    Chen, S., Chen, I., Wu, M.: Supercond. Sci. Technol. 18, 916 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    Kung, P.J., Maley, M.P., McHenry, M.E., Willis, J.O., Murakami, M., Tanaka, S.: Phys. Rev. B 48, 13922 (1993) ADSCrossRefGoogle Scholar
  4. 4.
    He, Z.H., Habisreuther, T., Bruchlos, G., Litzkendorf, D., Gawalek, W.: Physica C 356, 277 (2001) ADSCrossRefGoogle Scholar
  5. 5.
    Caixuan, X., Anming, H., Naomichi, S., Izumi, M., Izumi, H.: Physica C 445, 357 (2006) CrossRefGoogle Scholar
  6. 6.
    Xu, Y., Hu, A., Xu, C., Sakai, N., Hirabayashi, I., Izumi, M.: Physica C 468, 1363 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    Caixuan, X., Anming, H., Masakai, I., Naomichi, S., Izumi, H., Mitsuru, I.: Physica C 460–462, 345 (2007) Google Scholar
  8. 8.
    Strickland, N.-M., Long, N.J., Talantsev, E.F., Hoefakker, P., Xia, J., Rupoch, M.W., Kodenkandath, T., Zhang, W., Li, X., Huang, Y.: Physica C 468, 183 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    Varanasi, C.V., Barnes, P.N., Burke, J.: Supercond. Sci. Technol. 20, 1071 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    Yang, W.M., Zhou, L., Feng, Y., Zhang, P.X., Wu, M.Z., Zhang, C.P., Wang, J.R., Du, Z.H., Wang, F.Y., Yu, Z.M., Wu, X.Z., Gawalek, W., Gornert, P.: Physica C 305, 269 (1998) ADSCrossRefGoogle Scholar
  11. 11.
    Al Khawaja, U., Benkraouda, M., Obaidat, I.M., Alneaimi, S.: Physica C 442, 1 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    Takezawa, N., Fukushima, K.: Physica C 228, 149 (1994) ADSCrossRefGoogle Scholar
  13. 13.
    Takezawa, N., Fukushima, K.: Physica C 290, 31 (1997) ADSCrossRefGoogle Scholar
  14. 14.
    Djurado, E., Meunier, E.: J. Solid State Chem. 141, 191 (1998) ADSCrossRefGoogle Scholar
  15. 15.
    Djurado, E., Bouvier, P., Lucazeau, G.: J. Solid State Chem. 149, 399 (2000) ADSCrossRefGoogle Scholar
  16. 16.
    Boulfrad, S., Djurado, E., Fouletier, J.: Solid State Ion. 180, 978 (2009) CrossRefGoogle Scholar
  17. 17.
    Chen, D.X., Goldfarb, R.B.: J. Appl. Phys. 66, 2489 (1989) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Nahed Moutalbi
    • 1
  • Asma Ouerghi
    • 1
  • Ali M’chirgui
    • 1
    • 2
  1. 1.Department of PhysicsFaculty of SciencesZarzouna BizerteTunisia
  2. 2.Systems and Applied Mechanics laboratory, (LASMAP)Polytechnic School of TunisiaTunisTunisia

Personalised recommendations