Advertisement

Vortex–Antivortex Dynamics in a Mesoscopic Superconducting Prism with a Centered Antidot

  • J. Barba-Ortega
  • E. Sardella
  • J. Albino Aguiar
Original Paper

Abstract

In this work, we investigated theoretically the dynamics of the annihilation of a vortex–antivortex pair in a superconducting mesoscopic prism of square transversal section with a square antidot inserted at its center. The sample is immersed in a magnetic field applied perpendicular to the sample plane. It is assumed that the inner hole is made of a material whose properties are accounted on de Gennes boundary conditions via de Gennes extrapolation length (b parameter). We analyze the nucleation of vortices and antivortices by increasing the magnetic field from zero until the first vortex is created and then reversing the polarity of the applied magnetic field until an antivortex is also created. Depending on the b parameter, the vortex–antivortex encounter can take place at the hole or at the superconducting region around it. In the framework of the time dependent Ginzburg–Landau theory, we calculate the magnetization, order parameter topology, the position and the velocity of the vortex and antivortex singularities as a function of time.

Keywords

De Gennes parameter Ginzburg–Landau Lorentz force Pinning force 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gillijns, W., Aladyshkin, A.Yu., Lange, M., Van Bael, M.J., Moschalkov, V.V.: Phys. Rev. Lett. 95, 227003 (2005) CrossRefADSGoogle Scholar
  2. 2.
    Lange, M., Van Bael, M.J., Bruynseraede, Y., Moschalkov, V.V.: Phys. Rev. Lett. 90, 197006 (2003) CrossRefADSGoogle Scholar
  3. 3.
    Moschalkov, V.V., Bruynseraede, Y., Van Look, L., Grigorenko, A.N., Tonomura, A.: In: Naywa, H.S. (ed.) Handbook of Nanostructured Materials and Nanotechnology, vol. 3, p. 451. Academic Press, San Diego (1999). Chap. 9 CrossRefGoogle Scholar
  4. 4.
    Moschalkov, V.V., Gielen, L., Strunk, C., Jonckheere, R., Qiu, X., Van Haesendonck, C., Bruynseraede, Y.: Nature (London) 373, 319 (1995) CrossRefADSGoogle Scholar
  5. 5.
    de Souza, C.C., Van de Vondel, J., Zhu, B.Y., Morelle, M., Moshchalkov, V.V.: Phys. Rev. B 73, 014507 (2006) CrossRefADSGoogle Scholar
  6. 6.
    Barba, J.J., Souza, C.C., Cabral, L., Aguiar, J.A.: Physica C 468, 718 (2008) CrossRefADSGoogle Scholar
  7. 7.
    Barba, J.J., Souza, C.C., Aguiar, J.A.: Physica C 469, 852 (2009) CrossRefADSGoogle Scholar
  8. 8.
    Barba, J.J., Aguiar, J.A.: Physica C 469, 754 (2009) CrossRefADSGoogle Scholar
  9. 9.
    Leonardo, R., Cabral, E., Barba-Ortega, J., de Souza Silva, C.C., Aguiar, J.A.: Physica C 470, 786 (2010) CrossRefADSGoogle Scholar
  10. 10.
    Chibotaru, L.F., Ceulemans, A., Bruyndonck, V., Moschalkov, V.V.: Nature (London) 408, 833 (2000) CrossRefADSGoogle Scholar
  11. 11.
    Berdiyorov, G., Milosevic, M., Peeters, F.M.: Phys. Rev. Lett. 96, 207001 (2006) CrossRefADSGoogle Scholar
  12. 12.
    Misko, V.R., Fomin, V.M., Devreese, J.T., Moschalkov, V.V.: Phys. Rev. Lett. 90, 147003 (2003) CrossRefADSGoogle Scholar
  13. 13.
    Geurts, R., Milosevic, M., Peeters, F.M.: Phys. Rev. Lett. 97, 137002 (2006) CrossRefADSGoogle Scholar
  14. 14.
    Sardella, E., Noronha Lisboa, P., Souza, C.C., Cabral, L.R.E., Ortiz, W.: Phys. Rev. B 80, 012506 (2009) CrossRefADSGoogle Scholar
  15. 15.
    Bolech, A.C., Buscaglia, G.C., Lopez, A.: In: Berger, J., Rubinstein, J. (eds.) Connectivity and Superconductivity. Springer, Berlin (2000) Google Scholar
  16. 16.
    Tinkham, M.: Introduction to Superconductivity. McGraw-Hill, New York (1996) Google Scholar
  17. 17.
    Gropp, D., Kaper, H.G., Leaf, G.K., Levine, D.M., Palumbo, M., Vinokur, V.M.: J. Comput. Phys. 123, 54 (1996) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • J. Barba-Ortega
    • 1
  • E. Sardella
    • 2
  • J. Albino Aguiar
    • 3
  1. 1.Grupo de Física de Nuevos MaterialesUniversidad Nacional de ColombiaBogotáColombia
  2. 2.Departamento de Física, Faculdade de CiênciasUNESP- Universidade Estadual PaulistaBauru-SPBrazil
  3. 3.Laboratório de Supercondutividade e Materiais Avançados, Departamento de FísicaUniversidade Federal de PernambucoRecifeBrazil

Personalised recommendations