An Introduction to Numerical Methods in Superconductors

  • A. M. Campbell
Original Paper


A summary is given of some of the various numerical methods which have been used to solve the field equations in superconductors. Some comparisons are made between the commonest methods and constitutive equations used. The difficulties in extending methods to three-dimensional situations are discussed. These include not only the numerical problems but also the lack of suitable parameters for describing flux cutting. Other problems which need to be addressed are losses in complete solenoids of pancake coils and the results of many hysteretic cycles.


Vortex Critical State Wire Array Twisted Tape Bean Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Witzeling, W.: Computation of screening currents in superconducting persistent current devices. In: Cryogenics, pp. 29–32 (1976) Google Scholar
  2. 2.
    Brandt, E.H.: Superconductors of finite thickness in a perpendicular magnetic field: strips and slabs. Phys. Rev. B 54, 4246–4264 (1996) CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Coombs, T.A., Campbell, A.M., Murphy, A., Emmens, M.: A fast algorithm for calculating the critical state in superconductors. Compel 20, 240–252 (2001) Google Scholar
  4. 4.
    Campbell, A.M.: A direct method for obtaining the critical state in two and three dimensions. Supercond. Sci. Technol. 22, 034005 (2009) CrossRefADSGoogle Scholar
  5. 5.
    Vanderbemden, P., Hong, Z., Coombs, T.A., Denis, S., Ausloos, M., Schwartz, J., Rutel, I.B., Babu, N.H., Cardwell, D.A., Campbell, A.M.: Behavior of bulk high-temperature superconductors of finite thickness subjected to crossed magnetic fields: experiment and model. Phys. Rev. B 75, 174515 (2007) CrossRefADSGoogle Scholar
  6. 6.
    Alvarez, A., Suarez, P., Caceres, D., Granados, X., Obradors, X., Bosch, R., Cordero, E., Perez, B., Caballero, A., Blanco, J.A.: Superconducting armature for induction motor of axial flux based on YBCO bulks. Physica C 372, 1517–1519 (2002) CrossRefADSGoogle Scholar
  7. 7.
    Amemiya, N., Miyamoto, K., Banno, N., Tsukamoto, O.: Numerical analysis of AC losses in high T c superconductors based on Ej characteristics represented with n-value. IEEE Trans. Appl. Supercond. 7, 2110–2113 (1997) CrossRefGoogle Scholar
  8. 8.
    Banno, N., Amemiya, N.: Numerical analysis of AC loss in high T c twisted tape carrying AC transport current in external AC magnetic field—Effect of twisting on loss reduction. IEEE Trans. Appl. Supercond. 9, 2561–2564 (1999) CrossRefGoogle Scholar
  9. 9.
    Campbell, A.M.: Electromagnetic properties of superconductors. In: Cardwell, D.A., Ginley, D.S. (eds.) Handbook of Superconducting Materials, pp. 1217–1253. IOP, Amsterdam (2003) Google Scholar
  10. 10.
    Prigozhin, L.: The bean model in superconductivity: Variational formulation and numerical solution. J. Comput. Phys. 129, 190–200 (1996) CrossRefMATHADSMathSciNetGoogle Scholar
  11. 11.
    Prigozhin, L.: Solution of thin film magnetization problems in type-II superconductivity. J. Comput. Phys. 144, 180–193 (1998) CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Bossavit, A.: Numerical modeling of superconductors in 3 dimensions—a model and a finite-element method. IEEE Trans. Magn. 30, 3363–3366 (1994) CrossRefADSGoogle Scholar
  13. 13.
    Badia, A., Lopez, C.: Vector magnetic hysteresis of hard superconductors. Phys. Rev. B 65, 104514 (2002) CrossRefADSGoogle Scholar
  14. 14.
    Badia, A., Lopez, C., Giordano, J.L.: Optimal control model for the critical state in superconductors. Phys. Rev. B 58, 9440–9449 (1998) CrossRefADSGoogle Scholar
  15. 15.
    Cave, J.R., Evetts, J.E.: Static electric-potential structures on surface of a type-II superconductor in flux flow state. Philos. Mag. 37, 111–118 (1978) CrossRefGoogle Scholar
  16. 16.
    Carballo-Sanchez, A.F., Perez-Rodriguez, F., Perez-Gonzalez, A.: Magnetic response of hard superconductors subjected to parallel rotating magnetic fields. J. Appl. Phys. 90, 3455–3461 (2001) CrossRefADSGoogle Scholar
  17. 17.
    Clem, J.R., Perez-Gonzalez, A.: Flux-line-cutting and flux-pinning losses in type-II superconductors in rotating magnetic fields. Phys. Rev. B 30, 5041–5047 (1984) CrossRefADSGoogle Scholar
  18. 18.
    Grilli, F., Stavrev, S., Le Floch, Y., Costa-Bouzo, M., Vinot, E., Klutsch, L., Meunier, G., Tixador, P., Dutoit, B.: Finite-element method modeling of superconductors: from 2-D to 3-D. IEEE Trans. Appl. Supercond. 15, 17–25 (2005) CrossRefGoogle Scholar
  19. 19.
    Vinot, E., Meunier, G., Tixador, P.: Different formulations to model superconductors. IEEE Trans. Magn. 36, 1226–1229 (2000) CrossRefADSGoogle Scholar
  20. 20.
    Campbell, A.M.: Interaction distance between flux lines and pinning centres. J. Phys. C, Solid State Phys. 4, 3186–3198 (1971) CrossRefADSGoogle Scholar
  21. 21.
    Clem, J.R., Claassen, J.H., Mawatari, Y.: AC losses in a finite Z stack using an anisotropic homogeneous-medium approximation. Supercond. Sci. Technol. 20, 1130–1139 (2007) CrossRefADSGoogle Scholar
  22. 22.
    Yuan, W.J., Campbell, A.M., Coombs, T.A.: A model for calculating the AC losses of second-generation high temperature superconductor pancake coils. Supercond. Sci. Technol. 22 (2009) Google Scholar
  23. 23.
    Vanderbemden, P., Dorbolo, S., Hari-Babu, N., Ntatsis, A., Cardwell, D.A., Campbell, A.M.: Behavior of bulk melt-textured YBCO single domains subjected to crossed magnetic fields. IEEE Trans. Appl. Supercond. 13, 3746–3749 (2003) CrossRefGoogle Scholar
  24. 24.
    Yan, Y., Li, Q., Coombs, T.A.: Thermally actuated magnetization flux pump in single-grain YBCO bulk. Supercond. Sci. Technol. 22 (2009) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of EngineeringTrumpington StreetCambridgeUK

Personalised recommendations