Advertisement

Precursor Influence on the Electrical Properties of Textured Bi-2212 Superconductors

  • A. Sotelo
  • S. Rasekh
  • M. A. Madre
  • J. C. Diez
Original Paper

Abstract

Several synthetic methods, solid-state, sol-gel and polymer solution methods, have been used to prepare prereacted precursors, as well as a vitreous material obtained by melt quenching. The influence of the starting powder characteristics on the phase formation, microstructure, T c and J c of Bi-2212 textured rods prepared by directional crystallization from the melt has been analyzed. In all the cases, high transport critical current values (higher than 3000 A/cm2 at 77 K) have been obtained, independently of the precursor type. Samples obtained by the polymer route show improved T c values, associated to a lower oxygen content.

Keywords

Bi-2212 Resistivity Critical current Synthesis Directional growth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, M., Donzel, L., Lakner, M., Paul, W.: J. Eur. Ceram. Soc. 24, 1815 (2004) CrossRefGoogle Scholar
  2. 2.
    Hermann, P.F.: Handbook of Applied Superconductivity. IOP Publishing, Bristol (1998) Google Scholar
  3. 3.
    Noe, M., Juengst, K.P., Werfel, F.N., Elschner, S., Bock, J., Breuer, F., Kreutz, R.: IEEE Trans. Appl. Supercond. 13, 1976 (2003) CrossRefGoogle Scholar
  4. 4.
    Garnier, V., Caillard, R., Sotelo, A., Desgardin, G.: Physica C 319, 197 (1999) CrossRefADSGoogle Scholar
  5. 5.
    Maeda, H., Ohya, K., Sato, M., Chen, W.P., Watanabe, K., Motokawa, M., Matsumoto, A., Kumakura, H., Schwartz, J.: Physica C 382, 33 (2002) CrossRefADSGoogle Scholar
  6. 6.
    Martin-Gonzalez, M.S., Garcia-Jaca, J., Moran, E., Alario-Franco, M.A.: J. Mater. Res. 14, 3497 (1999) CrossRefADSGoogle Scholar
  7. 7.
    Feigelson, R.S., Gazit, D., Fork, D.K., Geballe, T.H.: Science 240, 1642 (1988) CrossRefADSGoogle Scholar
  8. 8.
    Sotelo, A., Mora, M., Madre, M.A., Diez, J.C., Angurel, L.A., De la Fuente, G.F.: J. Eur. Ceram. Soc. 25, 2947 (2005) CrossRefGoogle Scholar
  9. 9.
    Mora, M., Sotelo, A., Amaveda, H., Madre, M.A., Diez, J.C., Capel, F., López-Cepero, J.M.: J. Eur. Ceram. Soc. 27, 3959 (2007) CrossRefGoogle Scholar
  10. 10.
    de la Fuente, G.F., Ruiz, M.T., Sotelo, A., Larrea, A., Navarro, R.: Mater. Sci. Eng. A 173, 201 (1993) CrossRefGoogle Scholar
  11. 11.
    Shi, D.: High Temperature Superconducting Materials Science and Engineering. Pergamon Press, Oxford (1995) Google Scholar
  12. 12.
    Ruiz, M.T., de la Fuente, G.F., Badia, A., Blasco, J., Castro, M., Sotelo, A., Larrea, A., Lera, F., Rillo, C., Navarro, R.: J. Mater. Res. 8, 1268 (1997) CrossRefADSGoogle Scholar
  13. 13.
    Sotelo, A., Majewski, P., Park, H.-S., Aldinger, F.: Physica C 272, 115 (1996) CrossRefADSGoogle Scholar
  14. 14.
    Carrasco, M.F., Costa, F.M., Silva, R.F., Gimeno, F., Sotelo, A., Mora, M., Diez, J.C., Angurel, L.A.: Physica C 415, 163 (2004) CrossRefADSGoogle Scholar
  15. 15.
    Roy, R.: Science 238, 1664 (1987) CrossRefADSGoogle Scholar
  16. 16.
    de la Fuente, G.F., Sotelo, A., Huang, Y., Ruiz, M.T., Badia, A., Angurel, L.A., Lera, F., Navarro, R., Rillo, C., Ibañez, R., Beltran, D., Sapiña, F., Beltran, A.: Physica C 185–189, 509 (1991) CrossRefGoogle Scholar
  17. 17.
    Sotelo, A., Szillat, H., Majewski, P., Aldinger, F.: Supercond. Sci. Technol. 10, 717 (1997) CrossRefADSGoogle Scholar
  18. 18.
    Funahashi, R., Matsubara, I., Ueno, K., Ishikawa, H.: Physica C 311, 107 (1999) CrossRefADSGoogle Scholar
  19. 19.
    Mora, M., Martinez, E., Diez, J.C., Angurel, L.A., de la Fuente, G.F.: J. Mater. Res. 15, 614 (2000) CrossRefADSGoogle Scholar
  20. 20.
    Mora, M., Fernández, J., Angurel, L.A., Navarro, R.: Physica C 312, 136 (1999) CrossRefADSGoogle Scholar
  21. 21.
    Desgardin, G., Delamare, M.P., Delorme, F., Garnier, V., Giovannelli, F., Leblond-Harnois, C., Marinel, S., Monot-Laffez, I., Rouessac, V., Wang, J.: Int. J. Inorg. Mater. 2, 609 (2000) CrossRefGoogle Scholar
  22. 22.
    Hull, D.: Fractography: Observing, Measuring and Interpreting Fracture Surface Topography. Cambridge University Press, Cambridge (1999) Google Scholar
  23. 23.
    de la Fuente, G.F., Diez, J.C., Angurel, L.A., Peña, J.I., Sotelo, A., Navarro, R.: Adv. Mater. 7, 853 (1995) CrossRefGoogle Scholar
  24. 24.
    Fukushima, N., Niu, H., Nakamura, S., Takano, S., Hayashi, M., Ando, K.: Physica C 159, 777 (1989) CrossRefADSGoogle Scholar
  25. 25.
    Agarwal, S.K., Awana, V.P.S., Moorthy, V.N., Maruthi Kumar, P., Kumaraswamy, B.V., Narashima Rao, C.V., Narlikar, A.V.: Physica C 160, 278 (1989) CrossRefADSGoogle Scholar
  26. 26.
    Sotelo, A., Peña, J.I., Angurel, L.A., Diez, J.C., Ruiz, M.T., de la Fuente, G.F., Navarro, R.: J. Mater. Sci. 32, 5679 (1997) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • A. Sotelo
    • 1
  • S. Rasekh
    • 1
  • M. A. Madre
    • 1
  • J. C. Diez
    • 1
  1. 1.Instituto de Ciencia de Materiales de Aragón (ICMA)CSIC-Universidad de ZaragozaZaragozaSpain

Personalised recommendations