Advertisement

HTS SMES Application for the Frequency Stabilization of Grid-Connected Wind Power Generation System

  • M. Park
  • A. R. Kim
  • K. M. Kim
  • J. G. Kim
  • I. K. Yu
  • S. H. Kim
  • K. Sim
  • M. H. Sohn
  • K. C. Seong
Original Paper

Abstract

Output power of the wind power generation system (WPGS) fluctuates due to wind speed variation and affects the frequency and voltage fluctuations of the utility. Superconducting Magnetic Energy Storage (SMES) can overcome these fluctuations because of fast response time for energy charging and discharging. To stabilize the frequency fluctuation, HTS SMES should be connected to the terminal of the WPGS. Ulleung island power network in Korea was modeled to demonstrate the effectiveness of SMES for frequency stabilization. Based on the simulation results using EMTDC, a toroidal-type HTS SMES cooled by conduction cooling method and a DC/DC chopper for current charging and discharging were fabricated for experiment. Power network including WPGS was implemented through a Real Time Digital Simulator (RTDS). The simulation and experimental results for frequency stabilization using real HTS SMES and RTDS are discussed in detail.

Keywords

Frequency stabilization HTS SMES RTDS Wind power generation system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bladberg, B.: IEEE Trans. Power Electron. 19, 1184 (2004) CrossRefGoogle Scholar
  2. 2.
    Seo, Y.T., Kwan, S.J.: ETRI J. 22, 50 (2001) Google Scholar
  3. 3.
    Jung, H.Y., Kim, A.R., Kim, J.H., Park, M., Yu, I.K., Kim, S.H., Sim, K., Kim, H.J., Seong, K.C., Asao, T., Tamura, J.: IEEE Trans. Appl. Supercond. 19, 2028 (2009) CrossRefADSGoogle Scholar
  4. 4.
    Ali, M.H., Murata, T., Tamura, J.: Power Electron. Drives Syst. 2005(2), 1611 (2005) Google Scholar
  5. 5.
    Shi, L., Xu, Z., Hao, J.: Wind Energy 10, 303 (2007) CrossRefADSGoogle Scholar
  6. 6.
    Asao, T., Takahashi, R., Murata, T., Tamura, J., Kubo, M., Matsumura, Y., Kuwayama, A., Matsumoto, T.: Electr. Mach. Power Syst. 8, 302 (2007) Google Scholar
  7. 7.
    Xiao, L., Wang, Z., Dai, S., Zhang, J., Zhang, D., Gao, Z., Song, N., Zhang, F., Xu, X., Lin, L.: IEEE Trans. Appl. Supercond. 18, 770 (2008) CrossRefADSGoogle Scholar
  8. 8.
    Tixador, P., Deleglise, M., Badel, A., Berger, K., Bellin, B., Vallier, J.C., Allais, A., Bruzek, C.E.: IEEE Trans. Appl. Supercond. 18, 1967 (2008) CrossRefGoogle Scholar
  9. 9.
    Kim, A.R., Jung, H.Y., Kim, J.H., Park, M., Yu, I.K., Kim, S.H., Sim, K., Kim, H.J., Seong, K.C.: IEEE Trans. Appl. Supercond. 19, 2023 (2009) CrossRefADSGoogle Scholar
  10. 10.
    IEEE Std. 1207TM-2004, IEEE Power Engineering Society (2004) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • M. Park
    • 1
  • A. R. Kim
    • 1
  • K. M. Kim
    • 1
  • J. G. Kim
    • 1
  • I. K. Yu
    • 1
  • S. H. Kim
    • 2
  • K. Sim
    • 2
  • M. H. Sohn
    • 2
  • K. C. Seong
    • 2
  1. 1.Electrical EngineeringChangwon National UniversityChangwonKorea
  2. 2.Superconducting Devices & Cryogenics CenterKorea Electrotechnology Research InstituteChangwonKorea

Personalised recommendations