Journal of Superconductivity and Novel Magnetism

, Volume 23, Issue 7, pp 1359–1367 | Cite as

Detailed Physical Characterizations of Cu-rich and Ru-poor (Ru0.9Cu0.1)Sr2YCu2O7.9

  • S. Balamurugan
Original Paper


The optimized nominal composition, (Ru0.9Cu0.1) Sr2YCu2O7.9 sample, has been prepared through high-pressure and high-temperature solid-state densification method. The obtained material has been studied by X-ray (laboratory) diffraction powder technique, magnetization and detailed magneto-transport measurements. The title compound indicates bulk magneto-superconducting properties under field strengths of H=10, 100, 500 and 1000 Oe. It shows diamagnetic transition at T d=54, 38, 20 and 8 K for H=10, 100, 500 and 1000 Oe, respectively, in the zero-field-cooled susceptibility measurements. The high-field (H=5 and 10 kOe) molar susceptibility measurements show sharp ferromagnetic transition at ∼150 K with reduced molar susceptibility values. The various field dependence of magnetization, M(H), isotherm curves recorded at constant temperatures (5, 10, 25, 50, 100 and 150 K) indicate ferromagnetic saturation, whereas the MH curves measured at 200 and 300 K conditions reveal the paramagnetic state of the compound. Though the sample showed onset transition temperature, \(T_{\mathrm{c}}^{\mathrm{onset}}\), at ∼34 K under different field strengths (H=0, 10, 30, 50, 70 and 90 kOe), no \(T_{\mathrm{c}}^{R=0}\) is seen down to 2 K. Even under relatively low applied field (ΔH=10 kOe) the title compound shows large negative magnetoresistance (MR) of about 68% at 2 K and increases with increasing the field strength up to ΔH=90 kOe (MR=77% at 2 K). This value is amazing and probably higher than other 1212 type ruthenocuprates. The title compound which shows little negative MR (about 1%) in the high temperature regions (125–300 K) is not affected much by different field strengths. Among the different fixed temperature MR(H) isotherms, the MR(H) curve measured at 5 K shows maximum negative MR of about 47% at 90 kOe compared to other four (T=50, 100, 200 and 300 K) MR(H) curves.


Ruthenocuprates RuSr2YCu2O8 Preparation technique Complex physical properties Magneto-transport studies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yang, L.T., Liang, J.K., Liu, Q.L., Jin, C.Q., Feng, X.M., Song, G.B., Luo, J., Liu, F.S., Rao, G.H.: J. Solid State Chem. 177, 1072–1077 (2004) CrossRefADSGoogle Scholar
  2. 2.
    Hellebrand, B., Wang, X.Z., Steger, P.L.: J. Solid State Chem. 110, 32–35 (1994) CrossRefADSGoogle Scholar
  3. 3.
    Aguirre, M.H., Ruiz Bustos, R., Alario Franco, M.A.: J. Mater. Chem. 13, 1156–1160 (2003) CrossRefGoogle Scholar
  4. 4.
    McLaughlin, A.C., Attfield, J.P., Tallon, J.L.: Int. J. Inorg. Mater. 2, 95–99 (2000) CrossRefGoogle Scholar
  5. 5.
    Yang, L.T., Liang, J.K., Liu, Q.L., Song, G.B., Liu, F.S., Luo, J., Rao, G.H.: Physica C 403, 177–182 (2004) CrossRefADSGoogle Scholar
  6. 6.
    Escamilla, R., Morales, F., Akachi, T., Gomez, R.: Supercond. Sci. Technol. 18, 798–804 (2005) CrossRefADSGoogle Scholar
  7. 7.
    Escamilla, R., Duran, A., Escudero, R.: Supercond. Sci. Technol. 18, 1003–1009 (2005) CrossRefADSGoogle Scholar
  8. 8.
    Kuzmicheva, G.M., Kokunova, V.N., Mitin, A.V., Kostyleva, I.E., Khlybov, E.P., Andreenko, A.S.: J. Struct. Chem 45, 231–252 (2004) CrossRefGoogle Scholar
  9. 9.
    Ruiz-Bustos, R., Dos Santos-Garcıá, A.J., Alario-Franco, M.Á.: Z. Anorg. Allg. Chem. 1919–1924 (2007) Google Scholar
  10. 10.
    Kawashima, T., Takayama-Muromachi, E.: J. Magn. Magn. Mater. 272–276, e167–e168 (2004) CrossRefGoogle Scholar
  11. 11.
    Kawashima, T., Takayama-Muromachi, E.: Physica C 398, 85–94 (2003) CrossRefADSGoogle Scholar
  12. 12.
    Takayama-Muromachi, E., Kawashima, T., Zhigadlo, N.D., Drezen, T., Isobe, M., Matveev, A.T., Kimoto, K., Matsui, Y.: Physica C 357–360, 318 (2001) CrossRefGoogle Scholar
  13. 13.
    Awana, V.P.S., Kawashima, T., Takayama-Muromachi, E.: Phys. Rev. B 67, 172502 (2003) CrossRefADSGoogle Scholar
  14. 14.
    Zivković, I., Awana, V.P.S., Kishan, H., Balamurugan, S., Takayama-Muromachi, E., Felner, I.: J. Appl. Phys. 101, 09G112 (2007) CrossRefGoogle Scholar
  15. 15.
    Kumagai, K., Takada, S., Furukawa, Y.: Phys. Rev. B 63, 180509 (2001) CrossRefADSGoogle Scholar
  16. 16.
    Furukawa, Y., Takada, S., Kumagai, K., Kawashima, T., Takayama-Muromachi, E., Kobayashi, N., Fukase, T., Chiba, K., Goto, T.: J. Phys. Chem. Solids 63, 2315 (2002) CrossRefADSGoogle Scholar
  17. 17.
    Cardoso, C.A., Araujo-Moreira, F.M., Awana, V.P.S., Kishan, H., Takayama-Muromachi, E., de Lima, O.F.: Physica C 405(3–4), 212 (2004) CrossRefADSGoogle Scholar
  18. 18.
    Takagiwa, H., Akimitsu, J., Kawano-Furukawa, H., Yoshizawa, H.: J. Phys. Soc. Jpn. 70(2), 333 (2001) CrossRefADSGoogle Scholar
  19. 19.
    Tokunaga, Y., Kotegawa, H., Ishida, K., Kitaoka, Y., Takagiwa, H., Akimitsu, J.: Phys. Rev. Lett. 86, 5767 (2001) CrossRefADSGoogle Scholar
  20. 20.
    Tokunaga, Y., Kotegawa, H., Ishida, K., Kitaoka, Y., Takagiwa, H., Akimitsu, J.: Physica C 364–365, 379 (2001) CrossRefGoogle Scholar
  21. 21.
    Kanegae, Y., Ohashi, Y.: J. Phys. Soc. Jpn. 72(7), 1631 (2003) CrossRefADSGoogle Scholar
  22. 22.
    Awana, V.P.S., Kishan, H.: Pramana 66(1), 247 (2006) CrossRefADSGoogle Scholar
  23. 23.
    Furukawa, Y., Takada, S., Kumagai, K., Kawashima, T., Takayama-Muromachi, E.: J. Low Temp. Phys. 131, 1141 (2003) CrossRefGoogle Scholar
  24. 24.
    Blackstead, H.A., Yelon, W.B., Kornecki, M., Smylie, M.P., Cai, Q., Lamsal, J., Awana, V.P.S., Balamurugan, S., Takayama-Muromachi, E.: Phys. Rev. B 76, 094507 (2007) CrossRefADSGoogle Scholar
  25. 25.
    Yelon, W.B., Cai, Q., Lamsal, J., Blackstead, H.A., Kornecki, M., Awana, V.P.S., Kishan, H., Balamurugan, S., Takayama-Muromachi, E.: J. Appl. Phys. 101, 09G104 (2007) CrossRefGoogle Scholar
  26. 26.
    Zivković, I., Awana, V.P.S., Berger, H.: Eur. Phys. J. B 62, 423 (2008) CrossRefADSGoogle Scholar
  27. 27.
    De Marco, M., Coffey, D., Tallon, J., Haka, M., Toorongian, S., Fridmann, J.: Phys. Rev., B, Condens. Matter Mater. Phys. 65(21), 212506 (2002) ADSGoogle Scholar
  28. 28.
    Balamurugan, S., Awana, V.P.S., Takayama-Muromachi, E.: J. Appl. Phys. 101, 09G110 (2007) CrossRefGoogle Scholar
  29. 29.
    Petricek, V., Dusek, M., Palatinus, L.: JANA2006. The Crystallographic Computing System. Institute of Physics, Praha (2006) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Advanced Nano Materials LaboratoryNational Institute for Materials Science (NIMS)TsukubaJapan

Personalised recommendations