Journal of Superconductivity and Novel Magnetism

, Volume 23, Issue 6, pp 1193–1196 | Cite as

Anomalous Change of Transport Characteristics of Graphite Planar-Type Micro-structures Fabricated by Focused Ion Beam

Original Paper


We report the observation of an anomalous change of transport characteristics of planar-type microstructures (along ab-plane and c-axis) fabricated on thin graphite layer using a three-dimensional focused-ion-beam (FIB) etching technique. We have fabricated several in-plane area of sizes of 6 μm × 6 μm, 6 μm × 4 μm and 6 μm × 2 μm planar-type microstructures/patterns on thin graphite layer using FIB. The c-axis stack with the height of several nanometers was also fabricated. The transport characteristics were studied for these structures. We have observed a peculiar anomalous transition from ohmic behavior to curve-like nonlinear characteristics below 110 K from current (I)–voltage (V) curves for ab-plane and c-axis stack. Clear nonlinear characteristics have been observed at 25 K. Resistance versus temperature (RT) and IV characteristics of the ab-plane and c-axis stack strongly resemble this anomalous-transition behavior. These results show the superiority of graphite-microstructures for future graphite-based nonlinear electronic devices.


Planar-type structures Focused ion beam Anomalous transition Nonlinear characteristics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kelly, B.T.: Physics of Graphite. Applied Science, Englewood (1981) Google Scholar
  2. 2.
    Ohta, T., Bostwick, A., Seyller, T., Horn, K., Rotenberg, E.: Science 313, 951 (2006) CrossRefADSGoogle Scholar
  3. 3.
    Zhang, Y., Tan, J.W., Stormer, H.L., Kim, P.: Nature (Lond.) 438, 201 (2005) CrossRefADSGoogle Scholar
  4. 4.
    Wind, S.J., Appenzeller, J., Martel, R., Derycke, V., Avouris, Ph.: Appl. Phys. Lett. 80, 3817 (2002) CrossRefADSGoogle Scholar
  5. 5.
    Banerjee, S., Sardar, M., Gayathri, N., Tyagi, A.K., Baldev, R.: Appl. Phys. Lett. 88, 062111 (2006) CrossRefADSGoogle Scholar
  6. 6.
    Kopelevich, Y., Esquinazi, P., Torres, J., Moehlecke, S.: J. Low Temp. Phys. 119, 691 (2000) CrossRefGoogle Scholar
  7. 7.
    Kempa, H.: Solid State Commun. 115, 539 (2000) CrossRefADSGoogle Scholar
  8. 8.
    Quay, R., Hess, K., Reuter, R., Schlechtweg, M., Grave, T., Palankovski, V., Selberherr, S.: IEEE Trans. Electron Devices 48(2), 210 (2001) CrossRefADSGoogle Scholar
  9. 9.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Science 306, 666 (2004) CrossRefADSGoogle Scholar
  10. 10.
    Kim, S.J., Chen, J., Nakajima, K., Yamashita, T., Takahashi, S., Hatano, T.: J. Appl. Phys. 91, 8495 (2002) CrossRefADSGoogle Scholar
  11. 11.
    Matsubara, K., Sugihara, K., Tsuzuku, T.: Phys. Rev. B 41(2), 969 (1990) CrossRefADSGoogle Scholar
  12. 12.
    Sugihara, K.: Phys. Rev. B 37, 4752 (1988) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • V. Gunasekaran
    • 1
  • S. Saini
    • 1
  • G. S. Kim
    • 2
  • S.-J. Kim
    • 3
  1. 1.Graduate School of Science and Technology, Department of Mechanical System EngineeringJeju National UniversityJejuSouth Korea
  2. 2.Department of Mechanical System EngineeringJeju National UniversityJejuSouth Korea
  3. 3.Department of Mechatronics and Research Institute of Advanced Technology, Faculty of EngineeringJeju National UniversityJejuSouth Korea

Personalised recommendations