Rapid Thermal Annealing of ZnO Nanocrystalline Films for Dye-Sensitized Solar Cells

Original Paper


Nanocrystalline ZnO thin films were prepared by the sol–gel method and annealed at 600 °C by conventional (CTA) and rapid thermal annealing (RTA) processes on fluorine-doped tin oxide (FTO)-coated glass substrates for application as the work electrode for a dye-sensitized solar cell (DSSC). ZnO films were crystallized using a conventional furnace and the proposed RTA process at annealing rates of 5 °C/min and 600 °C/min, respectively. The ZnO thin films were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM) analyses. Based on the results, the ZnO thin films crystallized by the RTA process presented better crystallization than films crystallized in a conventional furnace. The ZnO films crystallized by RTA showed higher porosity and surface area than those prepared by CTA. The results show that the short-circuit photocurrent (J sc) and open-circuit voltage (V oc) values increased from 4.38 mA/cm2 and 0.55 V for the DSSC with the CTA-derived ZnO films to 5.88 mA/cm2 and 0.61 V, respectively, for the DSSC containing the RTA-derived ZnO films.


ZnO Rapid thermal annealing Nanocrystalline Dye-sensitized solar cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oregan, B., Gratzel, M.: Nature 353, 737 (1991) CrossRefADSGoogle Scholar
  2. 2.
    Turner, G.M., Beard, M.C., Schmuttenmaer, C.: J. Phys. Chem. B 106, 11716 (2002) CrossRefGoogle Scholar
  3. 3.
    Baxter, J.B., Aydil, E.S.: Appl. Phys. Lett. 86, 053114 (2005) CrossRefADSGoogle Scholar
  4. 4.
    Kopidakis, N., Benkstein, K.D., Lagemaat, J., Frank, A.J.: J. Phys. Chem. B 107, 11307 (2003) CrossRefGoogle Scholar
  5. 5.
    Hao, Y., Yang, M., Li, W., Qiao, X., Zhang, L., Cai, S.: Sol. Energy Mater. Sol. Cells 60, 349 (2000) CrossRefGoogle Scholar
  6. 6.
    Elkhidir, A., Tang, Y.W., Zhang, X., Jia, Z.J.: J. Appl. Sci. 6, 1298 (2006) CrossRefADSGoogle Scholar
  7. 7.
    Kao, M.C., Young, S.L., Chen, H.Z., Chen, Y.C., Hsieh, P.T., Wei, S.Y.: Int. J. Mod. Phys. B 21, 3448 (2007) CrossRefADSGoogle Scholar
  8. 8.
    Hwang, D.K., Oh, M.S., Choi, Y.S., Park, S.J.: Appl. Phys. Lett. 92, 161109 (2008) CrossRefADSGoogle Scholar
  9. 9.
    Zhao, J., Hu, L.Z., Wang, Z.Y., Sun, J., Wang, Z.J.: Appl. Surf. Sci. 253, 841 (2006) CrossRefADSGoogle Scholar
  10. 10.
    Galoppini, E., Rochford, J., Chen, H., Saraf, G., Lu, Y., Hagfeldt, A., Boschloo, G.: J. Phys. Chem. B 110, 16159 (2006) CrossRefGoogle Scholar
  11. 11.
    Bole, M.P., Patil, D.S.: J. Phys. Chem. Solids 70, 466 (2009) CrossRefADSGoogle Scholar
  12. 12.
    Law, M., Greene, L.E., Johnson, J.C., Saykally, R., Yang, P.D.: Nat. Mater. 4, 455 (2005) CrossRefADSGoogle Scholar
  13. 13.
    Yoshida, T., Terada, K., Schlettwein, D., Oekermann, T., Sugiura, T., Minoura, H.: Adv. Mater. 12, 1214 (2000) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Electronic EngineeringHsiuping Institute of TechnologyTaichungTaiwan
  2. 2.Department of Electrical EngineeringNational Chung Hsing UniversityTaichungTaiwan
  3. 3.Department of Electrical EngineeringHsiuping Institute of TechnologyTaichung CountyTaiwan

Personalised recommendations