Advertisement

Emergence of Pairing Interaction in the Hubbard Model in the Strong Coupling Limit

  • V. A. Apinyan
  • T. K. Kopeć
Original Paper
  • 30 Downloads

Abstract

We implement the rotationally-invariant formulation of the two-dimensional Hubbard model, with nearest-neighbors hopping t, which allows for the analytic study of the system in the low-energy limit. Both U(1) and SU(2) gauge transformations are used to factorize the charge and spin contribution to the original electron operator in terms of the corresponding gauge fields. The Hubbard Coulomb energy U-term is then expressed in terms of quantum phase variables conjugate to the local charge and variable spin quantization axis, providing a useful representation of strongly correlated systems. It is shown that these gauge fields play a similar role as phonons in the BCS theory: they act as the “glue” for fermion pairing. By tracing out gauge degrees of freedom the form of paired states is established and the strength of the pairing potential is determined. It is found that the attractive pairing potential in the effective low-energy fermionic action is non-zero in a rather narrow range of U/t.

Keywords

Pairing Hubbard model Strong coupling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Phys. Rev. 108, 1175 (1957) MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Bednorz, J.G., Müller, K.A.: Z. Phys. B: Condens. Matter 64, 189 (1986) CrossRefADSGoogle Scholar
  3. 3.
    Anderson, P.W.: Science 317, 1705 (2007) CrossRefGoogle Scholar
  4. 4.
    Hirsch, J.E.: Phys. Rev. B 31, 4403 (1985) CrossRefADSGoogle Scholar
  5. 5.
    Furukawa, N., Imada, M.: J. Phys. Soc. Jpn. 61, 3331 (1992) CrossRefADSGoogle Scholar
  6. 6.
    Fano, G., Ortolani, F., Parola, A.: Phys. Rev. B 42, 6877 (1990) CrossRefADSGoogle Scholar
  7. 7.
    Dagotto, E., Moreo, A., Ortolani, F., Poilblanc, D., Riera, J.: Phys. Rev. B 45, 10741 (1992) CrossRefADSGoogle Scholar
  8. 8.
    Kashima, T., Imada, M.: J. Phys. Soc. Jpn. 70, 2287 (2001) MATHCrossRefADSGoogle Scholar
  9. 9.
    Rohe, D., Metzner, W.: Phys. Rev. B 71, 115116 (2005) CrossRefADSGoogle Scholar
  10. 10.
    Maier, T., Jarrell, M., Pruschke, T., Hettler, M.H.: Rev. Mod. Phys. 77, 1027 (2005) CrossRefADSGoogle Scholar
  11. 11.
    Maier, T.A., Jarrell, M.S., Scalapino, D.J.: Phys. Rev. Lett. 96, 047005 (2006) CrossRefADSGoogle Scholar
  12. 12.
    Maier, T.A., Jarrell, M., Scalapino, D.J.: Phys. Rev. B 74, 094513 (2006) CrossRefADSGoogle Scholar
  13. 13.
    Monthoux, P., Scalapino, D.J.: Phys. Rev. Lett. 72, 1874 (1994) CrossRefADSGoogle Scholar
  14. 14.
    Kopeć, T.K.: Phys. Rev. B 73, 132512 (2006) CrossRefADSGoogle Scholar
  15. 15.
    Zaleski, T.A., Kopeć, T.K.: Phys. Rev. B 77, 125120 (2008) CrossRefADSGoogle Scholar
  16. 16.
    Negele, J.W., Orland, H.: In: Quantum Many Particle Systems. Frontiers in Physics, Addison-Wesley (1988) Google Scholar
  17. 17.
    Schulz, H.J.: Phys. Rev. Lett. 65, 2462 (1990) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institute for Low Temperature and Structure ResearchPolish Academy of SciencesWroclaw 2Poland

Personalised recommendations