Advertisement

Enhancement of the Current Density J C for Bi2Sr2CaCu2O8 by Means of Carbon and NbSe2 Nanotubes

  • D. H. Galvan
  • A. Durán
  • F. F. Castillón
  • E. Adem
  • R. Escudero
  • D. Ferrer
  • A. Torres
  • M. José-Yacamán
Article

Abstract

Three polycrystalline Bi2Sr2CaCu2O8, Bi2Sr2CaCu2O8 with carbon nanotubes, Bi2Sr2CaCu2O8 with NbSe2 nanotubes were synthesized by solid state reaction method and studied by scanning electron microscopy, X-ray diffraction, magnetization measurements, and high resolution transmission electron microscopy.

The critical temperature T C for the three compounds was about 85 K. There is an enhancement in the critical current density, J C for samples with carbon and NbSe2 nanotubes as compared with pure Bi2Sr2CaCu2O8. The enhancement provides evidence that wetting exists for the two doped samples investigated.

Keywords

Superconductivity Wetting Nanotubes 

PACS

74.72.-h 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wu, M.K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J., Wang, Y.Q., Chu, C.W.: Superconductivity at 93 K in a new mixed phase Y–Ba–Cu–O compound system at ambient temperature. Phys. Rev. Lett. 58, 908 (1987) CrossRefADSGoogle Scholar
  2. 2.
    Maeda, H., Tanaka, Y., Fukutomi, M., Asano, T.: A new high-T c oxide superconductor with rare earth element. Jpn. J. Appl. Phys. 27, L209 (1988) CrossRefADSGoogle Scholar
  3. 3.
    Sheng, Z.Z., Hermann, A.M.: Bulk superconductivity at 120 K in the Ta-Ca/Ba-Cu-O system. Nature 332, 138 (1988) CrossRefADSGoogle Scholar
  4. 4.
    Lee, D.F., Selvamanickam, V., Salama, K.: Influence of Y2BaCuO5 particle size and content on the transport critical current density of YBa2Cu3Ox superconductor. Physica C 202, 83 (1992) CrossRefADSGoogle Scholar
  5. 5.
    Wu, N., Zern, H.H., Chen, C.: Low temperature melt growth of YBa2Cu3O7−x/silver composite in partial vacuum. Physica C 241, 198 (1995) CrossRefADSGoogle Scholar
  6. 6.
    Pradhan, A.K., Feng, Y., Shibata, S., Nakao, K., Koshizuka, N.: Role of oxygen on the flux pinning and vortex phase transitions in the NdBa2Cu3O7−δ crystals. Physica C 357–360, 457 (2001) CrossRefGoogle Scholar
  7. 7.
    Oka, T., Itoh, Y., Yanagi, Y., Tanaka, H., Takashima, S., Yamada, Y., Mitzutami, U.: Critical current density and mechanical strength of YBa2Cu3O7−δ superconducting composites containing Zr, Ag and Y2BaCuO5 dispersions by melt-processing. Physica C 200, 55 (1992) CrossRefADSGoogle Scholar
  8. 8.
    Rayaprol, S., Mavani, K.R., Rana, D.S., Thaker, C.M., Dixit, M., Bhattacharya, S., Kuberkar, D.G.: Studies on La2−xPrxCayBa2Cuz mixed superconductors. Solid State Commun. 128, 97 (2003) CrossRefADSGoogle Scholar
  9. 9.
    Galvan, D.H., Li, S., Yuhasz, W.M., Kim, J.-H., Maple, M.B., Adem, E.: Nondestructive interaction of carbon nanotubes with Bi2Sr2CaCu2O8. Physica C 403, 145 (2004) CrossRefADSGoogle Scholar
  10. 10.
    Galvan, D.H., Aguilar-Elguezabal, A., Alonso, G.: High resolution TEM study of carbon nanotubes by spray pyrolisis. Optical Materials 29, 140 (2006) CrossRefADSGoogle Scholar
  11. 11.
    Galvan, D.H., Kim, J.-H., Maple, M.B., Avalos-Borja, M., Adem, E.: Formation of NbSe2 nanotubes by electron irradiation. Fullerene Sci. Technol. 8(3), 143 (2000) Google Scholar
  12. 12.
    Galvan, D.H., Kim, J.H., Maple, M.B., Hirata, G.A., Adem, E.: Flux pinning effecto of embedded carbon nanotubes in Bi2Sr2CaCu2O8. Physica C 341–348, 1269 (2000) CrossRefGoogle Scholar
  13. 13.
    Fossheim, K., Tuset, E.D., Ebessen, T.W., Treacy, M.M.J., Schwartz, J.: Enhanced flux pinning in Bi2Sr2CaCu2O8+x superconductor with embedded carbon nanotubes. Physica C 248, 195 (1995) CrossRefADSGoogle Scholar
  14. 14.
    Namgung, C., Irvine, J.T.S., Lachowski, E.E., West, A.R.: Inconmensurate structure and X-ray powder diffraction data for Bi2Sr2CaCu2O8+x. Superconductor Sci. Technol. 2, 140 (1989) CrossRefADSGoogle Scholar
  15. 15.
    Bean, C.P.: Magnetization of hard superconductors. Phys. Rev. Lett. 8, 250 (1962) MATHCrossRefADSGoogle Scholar
  16. 16.
    Bean, C.P.: Magnetization of high-field superconductors. Rev. Mod. Phys. 36, 31 (1964) CrossRefADSGoogle Scholar
  17. 17.
    Terasawa, M., Takezawa, N., Fukushima, K., Mitamura, T., Fan, X., Tsubakino, H., Kohara, T., Ueda, K., Awaya, Y., Kambara, T., Matsuda, M., Tatara, G.: Flux pinning and flux creep in La2−xSrxCuO4 with splayed columnar defects. Physica C 296, 57 (1988) CrossRefADSGoogle Scholar
  18. 18.
    Kasamov, A.Y., Deblock, R., Kociak, M., Reulet, B., Bouchiat, H., Kodos, I.I., Gorbatov, Y.B., Volkov, V.T., Journet, C., Bougard, M.: Supercurrent through single-walled carbon nanotubes. Science 284, 1508 (1999) CrossRefADSGoogle Scholar
  19. 19.
    Henderson, W.B.: Ph.D. Dissertation, The State University of New Jersey (1997) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • D. H. Galvan
    • 1
    • 2
  • A. Durán
    • 1
  • F. F. Castillón
    • 1
  • E. Adem
    • 4
  • R. Escudero
    • 3
  • D. Ferrer
    • 2
  • A. Torres
    • 2
  • M. José-Yacamán
    • 2
  1. 1.Centro de Nanociencias y NanotecnologíaUniversidad Nacional Autónoma de MéxicoEnsenadaMexico
  2. 2.International Center for Nanotechnology and Advanced MaterialsUniversity of Texas at AustinAustinUSA
  3. 3.Instituto de Investigación en MaterialesUniversidad Nacional Autónoma de MéxicoMéxicoMéxico
  4. 4.Instituto de FísicaUniversidad Nacional Autónoma de MéxicoMéxicoMéxico

Personalised recommendations