Advertisement

Applications of Superconductivity for Implementation of Phase Conjugation in the Microwave Region

  • Ling Hao
  • John Gallop
  • John Macfarlane
Article

Abstract

This paper extends a preliminary proposal and description of a superconductivity-based phase conjugating antenna for operation in the microwave range. The complementary properties of high-temperature superconductors and other oxide functional materials are emphasised. The potential applications of such an antenna are very wide. We consider the requirements for the Josephson junction which is at the heart of the phase conjugation operation, especially issues of the use of the internal Josephson oscillation or of an external signal to provide the local oscillator requirement. Other design requirements are also explored and the necessary substrate properties are set out which enable suitable junction properties, as well as phase shifter and interconnection functions.

Keywords

microwave phase conjugation superconductors oxide functional materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See for example: Gower and Proch, Optical Phase Conjugation. Springer Verlag (1993).Google Scholar
  2. 2.
    M. Fink, J. Phys. D: Appl. Phys. 26, 1333–1350 (1993).CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    J. Gallop, D. Peden, L. Hao, and J. Macfarlane, Supercond. Sci. Technol. 16, 1566–1569 (2003).CrossRefADSGoogle Scholar
  4. 4.
    Y. Chang, H. R. Fetterman, I. L. Newberg, and S. K. Panaretos, Appl. Phys. Lett. 72, 745–747 (1998).CrossRefADSGoogle Scholar
  5. 5.
    B. C. Liu, B. S. Cao, M. H. Zhu, G. Y. Zhang, W. J. He, X. B. Guo, S. He, Y. M. Wang, X. P. Zhang, and Y. G. Zhao, J. Supercond. 16, 819–822 (2003).CrossRefGoogle Scholar
  6. 6.
    Y. Taur, J. H. Claassen, and P. L. Richards, Appl. Phys. Lett. 24, 101–103 (1974).CrossRefGoogle Scholar
  7. 7.
    J. C. Gallop and B. W. Petley, IEEE Trans. Instrum. Meas. 44, 234–237 (1995).CrossRefGoogle Scholar
  8. 8.
    J. C. Macfarlane, L. Hao, D. A. Peden, and J. C. Gallop, Appl. Phys. Lett. 76, 1752–1754 (2000).CrossRefADSGoogle Scholar
  9. 9.
    J. Swihart, J. Appl. Phys. 32, 461–469 (1961).CrossRefGoogle Scholar
  10. 10.
    R. L. Kautz, Appl. Phys. 49, 308–314 (1978).CrossRefGoogle Scholar
  11. 11.
    A. T. Findikoglu, D. W. Reagor, K. Ø. Rasmussen, A. R. Bishop, N. Grønbech-Jensen, Q. X. Jia, Y. Fan, and C. Kwon, Appl. Phys. Lett. 74, 1770–1772 (1999).CrossRefADSGoogle Scholar
  12. 12.
    R. Mossavati, J. C. Gallop, T. Button, and N. McN Alford, IEEE Trans. Mag. MAG 27, 2952–2954 (1991).CrossRefADSGoogle Scholar
  13. 13.
    F. Huang, H. C. H. Cheung, M. J. Lancaster, R. G. Humphreys, N. G. Chew, and S. W. Goodyear, IEEE Trans. Appl. Supercond. 3, 2778–2781 (1993).CrossRefADSGoogle Scholar
  14. 14.
    F. Abbas, J. C. Gallop, and C. D. Langham, Cryogenics 37, 681–684 (1997).CrossRefGoogle Scholar
  15. 15.
    A. T. Findikoglu, Q. X. Jia, I. H. Campbell, X. D. Wu, D. Reagor, C. B. Mombourquette, and D. McMurry, Appl. Phys. Lett. 66, 3674–3676 (1995).CrossRefADSGoogle Scholar
  16. 16.
    E. F. Carlsson, P. K. Petrov, R. A. Chakalov, P. Larsson, Z. G. Ivanov, and S. S. Gevorgian, Appl. Supercond. Inst. Phys. Conf. Ser. 158, 339–342 (1998).Google Scholar
  17. 17.
    Q. Y. Ma, IEEE Trans. Appl. Supercond. 9, 3565–3568 (1999).CrossRefGoogle Scholar
  18. 18.
    D. Bracanovic, A. A. Esmail, S. J. Penn, S. J. Webb, T. W. Button, and N. McN Alford, IEEE Trans. Appl. Supercond. 11, 2422–2424 (1999).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Division of Enabling MetrologyNational Physical LaboratoryTeddingtonUK
  2. 2.Physics DepartmentStrathclyde UniversityGlasgowScotland

Personalised recommendations