An Effective Interaction Approach to Anisotropic Superconductors Beyond the Weak Coupling Theory—An Origin of the d-wave Symmetry in High-T c Cuprate

  • S. Suzuki


We propose an effective interaction approach to superconducting systems which is adapted to periodic systems and intermediate net coupling between charge carriers by phonon mediated and Coulomb repulsive interactions. A coupling function of effective interaction is given for homogeneous field beyond the weak coupling approximation by using a generalized intermediate coupling method. Adequate kernel for the periodic systems is also reduced to that coupling function in homogeneous field and the Fourier coefficients relevant to the Bloch function. Within the present approach we discuss the symmetry of the superconducting gap in cuprate under the assumption that a nonbonding band filled by 2p_σ electrons exists in an undoped system and that doped holes occupy orbitals in this band. Those orbitals are represented by linear combinations of p x and p y functions. It is argued, in the tetragonal limit, that the symmetry of the gap function is d-wave-like on account of the products of orbital functions in combination of singlet spin-pair in the kernel.


BCS theory and its development pairing symmetries electronic structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Fujita and D. L. Morabito, Mod. Phys. Lett. B12, 1061 (1998).Google Scholar
  2. 2.
    A. Lanzara et al., Nature 412, 501 (2001).Google Scholar
  3. 3.
    G.-H. Gweon et al., Nature 430, 187 (2004).Google Scholar
  4. 4.
    M. K. Crawford et al., Phys. Rev. B41, 282 (1990).Google Scholar
  5. 5.
    J. Hofer, K. Conder, T. Sasagawa, Guo-meng Zhao, M. Willemin, H. Keller, and K. Kishino, Phys. Rev. Lett. 84, 4192 (2000).Google Scholar
  6. 6.
    J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).Google Scholar
  7. 7.
    T. D. Lee and D. Pines, Phys. Rev. 88, 960 (1952).Google Scholar
  8. 8.
    T. D. Lee, F. E. Low, and D. Pines, Phys. Rev. 90, 297 (1953).Google Scholar
  9. 9.
    H. Takagi, T. Ido, S. Ishibashi, M. Uota, S. Uchida, and Y. Tokura, Phys. Rev. B40, 2254 (1989).Google Scholar
  10. 10.
    Y. Nakayama and S. Uchida, Phys. Rev. B47, 8369 (1993).Google Scholar
  11. 11.
    N. Nücker, J. Fink, J. C. Fuggle, P. J. Durham, and W. M. Jemmerman, Phys. Rev. B37, 5158 (1988).Google Scholar
  12. 12.
    P. Kuiper et al., Phys. Rev. B38, 6483 (1988).Google Scholar
  13. 13.
    C. T. Chen et al., Phys. Rev. Lett. 66, 104 (1991).Google Scholar
  14. 14.
    T. Takahashi et al., Nature 334, 691 (1988).Google Scholar
  15. 15.
    A. Bianconi et al., Phys. Rev. B38, 7196 (1988).Google Scholar
  16. 16.
    Y. Sekino, K. Okada, and A. Kotani, J. Phys. Soc. Jpn. 59.Google Scholar
  17. 17.
    N. Nücker, H. Romberg, X. X. Xi, J. Fink, B. Gegenheimer, and Z. X. Zhao, Phys. Rev. B39, 6619 (1989).Google Scholar
  18. 18.
    S. Uchida, T. Ido, H. Takagi, T. Arima, Y. Tokura, and S. Tajima, Phys. Rev. B43, 7942 (1991).Google Scholar
  19. 19.
    I. Terasaki et al. Physica C165, 152 (1990).Google Scholar
  20. 20.
    H. Romberg et al., Phys. Rev. B42, 8768 (1990).Google Scholar
  21. 21.
    T. Kawai, Parity 4, 59 (1989) (in Japanese).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • S. Suzuki
    • 1
  1. 1.Hachinohe National College of TechnologyHachinoheJapan

Personalised recommendations