Advertisement

Ginzburg–Landau Theory: A Powerful Tool to Study Vortex Matter in Nanostructured Superconductors

  • Victor. V. Moshchalkov
Article

Abstract

A brief review is given of recent advances in studies of the condensate and flux confinement phenomena in nanostructured superconductors. The predictive power and analytical potential of the Nobel prize winning Ginzburg–Landau (GL) theory has been demonstrated by considering some typical topics where novel vortex patterns and phases have been investigated by using local probe and integrated response techniques combined with the detailed theoretical analysis in the framework of the GL theory.

Keywords

Vortex Vortex Lattice Landau Theory Vortex Pattern Vortex Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950).Google Scholar
  2. 2.
  3. 3.
    V. V. Moshchalkov, L. Gielen, C. Strunk, R. Jonckheere, X. Qiu, C. Van Haesendonck, and Y. Bruynseraede, Nature, 373, 319 (1995).CrossRefADSGoogle Scholar
  4. 4.
    P.-G. de Gennes,Superconductivity of Metals and Alloys (Benjamin, New York, 1966), H. J. Fink, D. Rodrigues, A. Lopez, Phys. Rev. B 38 (13), 8767 (1988).MATHGoogle Scholar
  5. 5.
    V. V. Moshchalkov, X. G. Qiu, and V. Bruyndoncx, Phys. Rev. B 55, 11793 (1997).CrossRefADSGoogle Scholar
  6. 6.
    V. M. Fomin, J. T. Devreese, and V. V. Moshchalkov, Europhys. Lett. 42, 553 (1998).CrossRefADSGoogle Scholar
  7. 7.
    P. S. Deo, V. A. Schweigert, F. M. Peeters, and A. K. Geim, Phys. Rev. Lett. 79, 4653 (1997).CrossRefADSGoogle Scholar
  8. 8.
    L. F. Chibotaru, A. Ceulemans, G. Teniers, V. Bruyndoncx, and V. V. Moshchalkov, Eur. Phys. J. B 27, 341 (2002).CrossRefADSGoogle Scholar
  9. 9.
    D. S. Golubović, W. V. Pogosov, M. Morelle, and V. V. Moshchalkov, Europhys. Lett. 65, 546 (2004).CrossRefADSGoogle Scholar
  10. 10.
    V. Bruyndoncx, L. Van Look, and M. Verschuere, V. V. Moshchalkov, Phys. Rev. B 60, 10468–10476 (1999).CrossRefADSGoogle Scholar
  11. 11.
    L. F. Chibotaru, A. Ceulemans, M. Lorenzini, and V. V. Moshchalkov, Europhys. Lett. 63, 159 (2003), 63, 476 (2003).CrossRefADSGoogle Scholar
  12. 12.
    L. F. Chibotaru, A. Ceulemans, V. Bruyndoncx, and V. V. Moshchalkov, Nature 408, 833 (2000).CrossRefADSGoogle Scholar
  13. 13.
    J. Bonca and V. V. Kabanov, Phys. Rev. B 65, 012509 (2002).CrossRefADSGoogle Scholar
  14. 14.
    L. F. Chibotaru, A. Ceulemans, V. Bruyndoncx, and V. V. Moshchalkov, Phys. Rev. Lett. 86, 1323 (2001).CrossRefADSGoogle Scholar
  15. 15.
    H. T. Jadallah, J. Rubinstein, and P. Sternberg, Phys. Rev. Lett. 82, 2935 (1999).CrossRefADSGoogle Scholar
  16. 16.
    R. Benoist and W. Zwerger, Z. Phys. B: Condens. Matter 103, 377 (1997).CrossRefGoogle Scholar
  17. 17.
    A. I. Buzdin and J. P. Brison, Phys. Lett. A 196, 267 (1994).ADSGoogle Scholar
  18. 18.
    V. A. Schweigert, F. M. Peeters, and P. S. Deo, Phys. Rev. Lett. 81, 2783 (1998).CrossRefADSGoogle Scholar
  19. 19.
    J. J. Palacios, Phys. Rev. B 58, R5948 (1998).CrossRefADSGoogle Scholar
  20. 20.
    J. J. Palacios, Physica B 610, 256–258 (1998).Google Scholar
  21. 21.
    E. Akkermans and K. Mallick, J. Phys. A 32, 7133 (1999).CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    F. Brosens, J. T. Devreese, V. M. Fomin, and V. V. Moshchalkov, Solid State Commun. 111, 565 (1999).CrossRefGoogle Scholar
  23. 23.
    V. A. Schweigert and F. Peeters, Phys. Rev. B 60, 3084 (1999).CrossRefADSGoogle Scholar
  24. 24.
    S. N. Klimin, V. M. Fomin, J. T. Devreese, and V. V. Moshchalkov, Solid State Commun. 111, 589 (1999).CrossRefGoogle Scholar
  25. 25.
    B. J. Baelus, S. V. Yampolskii, and F. M. Peeters, Phys. Rev. B 66, 024517 (2002).CrossRefADSGoogle Scholar
  26. 26.
    L. F. Chibotaru, A. Ceulemans, M. Morelle, G. Teniers, C. Carballeira, and V. V. Moshchalkov, Journ. Math. Phys. 46, 095108 (2005).CrossRefMathSciNetGoogle Scholar
  27. 27.
    M. Morelle, J. Bekaert, and V. V. Moshchalkov, Phys. Rev. B 70, 094503 (2004).CrossRefADSGoogle Scholar
  28. 28.
    V. Bruyndoncx, J. G. Rodrigo, T. Puig, L. V. Look, V. V. Moshchalkov, and R. Jonckheere, Phys. Rev. B 60, 4285 (1999).CrossRefADSGoogle Scholar
  29. 29.
    E. H. Brandt, Phys. Rev. B 52, 15442 (1995).CrossRefADSGoogle Scholar
  30. 30.
    C. Strunk et al., Phys. Rev. B 54, R12701 (1996).CrossRefADSGoogle Scholar
  31. 31.
    A. Bezryadin, A. I. Buzdin, and B. Pannetier, Phys. Lett. A 195, 373 (1994).CrossRefADSGoogle Scholar
  32. 32.
    A. Bezryadin and B. Pannetier, J. Low Temp. Phys. 98, 251 (1995).CrossRefGoogle Scholar
  33. 33.
    Yu. E. Lozovik and E. A. Rakoch, Phys. Rev. B 57, 1214 (1998).CrossRefADSGoogle Scholar
  34. 34.
    M. Morelle, D. S. Golubović, and V. V. Moshchalkov, Phys. Rev. B 70, 144528 (2004).CrossRefADSGoogle Scholar
  35. 35.
    J. J. Palacios, Phys. Rev. Lett. 84, 1796 (2000).CrossRefADSGoogle Scholar
  36. 36.
    G. F. Zharkov, Phys. Rev. B 63, 224513 (2001).CrossRefADSGoogle Scholar
  37. 37.
    L. F. Chibotaru, A. Ceulemans, G. Teniers, and V. V. Moshchalkov, Physica C 369, 149 (2002).CrossRefADSGoogle Scholar
  38. 38.
    T. Mertelj and V. V. Kabanov, Phys. Rev. B 67, 134527 (2003).CrossRefADSGoogle Scholar
  39. 39.
    B. J. Baelus and F. M. Peeters, Phys. Rev. B 65, 104515 (2002).CrossRefADSGoogle Scholar
  40. 40.
    A. S. Mel’nikov, I. M. Nefedov, D. A. Ryzhov, I. A. Schereshevskii, V. M. Vinokur, and P. P. Vysheslavtsev, Phys. Rev. B 65, 140503 (2002).CrossRefADSGoogle Scholar
  41. 41.
    A. V. Nikulov, and I. N. Zhilyaev, Journ. Low Temp. Phys. 112(3–4), 227 (1998).CrossRefGoogle Scholar
  42. 42.
    V. R. Misko, V. M. Fomin, J. T. Devreese, and V. V. Moshchalkov, Phys. Rev. Lett. 90, 147003 (2003).CrossRefADSGoogle Scholar
  43. 43.
    A. Kanda, B. J. Baelus, F. M. Peeters, K. Kadowaki, and Y. Ootuka Phys. Rev. Lett. 93, 257002 (2004).CrossRefADSGoogle Scholar
  44. 44.
    G. Karapetrov, J. Fedor, M. Iavarone, D. Rosenmann, and W.K. Kwok Phys. Rev. Lett. 95, 167002 (2005).CrossRefADSGoogle Scholar
  45. 45.
    V. V. Moshchalkov, V. Bruyndoncx, L. Van Look in “Connectivity and Superconductivity,” Springer-Verlag, J. Berger, J. Rubinstein (eds.), chapter 4, 87–137 (2000).Google Scholar
  46. 46.
    V. V. Moshchalkov, L. Gielen, M. Dhallé, C. Van Haesendonck, and Y. Bruysneraede, Nature 361, 617 (1993).CrossRefADSGoogle Scholar
  47. 47.
    H. J. Fink, V. Grunfeld, and A. Lopez, Phys. Rev. B 35 (1), 35 (1987).CrossRefADSGoogle Scholar
  48. 48.
    A. T. Dorsey, Nature 408, 833 (2000).CrossRefGoogle Scholar
  49. 49.
    C. Carballeira, V. V. Moshchalkov, L. F. Chibotaru, and A. Ceulemans, Phys. Rev. Lett. 95, 237003 (2005).CrossRefADSGoogle Scholar
  50. 50.
    L. F. Chibotaru, G. Teniers, A. Ceulemans, and V. V. Moshchalkov, Phys. Rev. B 70, 094505 (2004).CrossRefADSGoogle Scholar
  51. 51.
    D. Saint-James, Phys. Lett. 15, (13) (1965).Google Scholar
  52. 52.
    H. J. Fink and A. G. Presson, Phys. Rev. 151, 219 (1966)CrossRefADSGoogle Scholar
  53. 53.
    V. V. Moshchalkov, X. G. Qiu, V. Bruyndoncx, J. Low Temp. Phys. 105, 515 (1996).CrossRefGoogle Scholar
  54. 54.
    A. K. Geim, et al. Nature, 396, 144 (1998).CrossRefADSGoogle Scholar
  55. 55.
    V. Bruyndoncx, C. Strunk, V. V. Moshchalkov, C. Van Haesendonck, and Y. Bruynseraede, Europhys. Lett. 36, 449 (1996).CrossRefADSGoogle Scholar
  56. 56.
    T. Puig, E. Rosseel, M. Baert, M. J. Van Bael, V. V. Moshchalkov, and Y. Bruynseraede, Appl. Phys. Lett. 70, 3155–3157 (1997).CrossRefADSGoogle Scholar
  57. 57.
    R. D. Parks, Science 146, 1429 (1964).CrossRefADSGoogle Scholar
  58. 58.
    G. R. Berdiyorov, B. J. Baelus, M. V. Miloević, and F. M. Peeters, Phys. Rev. B 68, 174521 (2003).CrossRefADSGoogle Scholar
  59. 59.
    M. Baert, V. V. Metlushko, R. Jonckheere, V. V. Moshchalkov, and Y. Bruynseraede, Phys. Rev. Lett. 74, 3269–3272 (1995).CrossRefADSGoogle Scholar
  60. 60.
    M. Baert, V. V. Metlushko, R. Jonckheere, V. V. Moshchalkov, and Y. Bruynseraede, Europhys. Lett. 29, 157 (1995).Google Scholar
  61. 61.
    A. Bezryadin and B. Pannetier, J. Low Temp. Phys. 98, 251 (1995).CrossRefGoogle Scholar
  62. 62.
    V. V. Moshchalkov, M. Baert, V. V. Metlushko, E. Rosseel, M. J. Van Bael, K. Temst, R. Jonckheere, and Y. Bruynseraede, Phys. Rev. B 54, 7385 (1996).CrossRefADSGoogle Scholar
  63. 63.
    K. Harada, O. Kamimura, H. Kasai, T. Matsuda, A. Tonomura, and V. V. Moshchalkov, Science 274, 1167 (1996).CrossRefADSGoogle Scholar
  64. 64.
    V. V. Moshchalkov, M. Baert, V. V. Metlushko, E. Rosseel, M. J. Van Bael, K. Temst, Y. Bruynseraede, and R. Jonckheere, Phys. Rev. B 57, 3615 (1998).CrossRefADSGoogle Scholar
  65. 65.
    V. V. Metlushko, L. E. DeLong, M. Baert, E. Rosseel, M. J. Van Bael, K. Temst, V. V. Moshchalkov, and Y. Bruynseraede, Europhys. Lett. 41, 333 (1998).CrossRefADSGoogle Scholar
  66. 66.
    S. J. Bending, G. D. Howells, A. Grigorenko, M. J. Van Bael, J. Bekaert, K. Temst, L. Van Look, V. V. Moshchalkov, Y. Bruynseraede, G. Borghs, and R. G. Humphreys, Physica C332, 20 (2000).ADSGoogle Scholar
  67. 67.
    V. Metlushko, et al. Phys. Rev. B 60, R12585 (1999).CrossRefADSGoogle Scholar
  68. 68.
    U. Welp, Z. L. Xiao, V. Novosad, and V. K. Vlasko-Vlasov, Phys. Rev. B 71, 014505 (2005).CrossRefADSGoogle Scholar
  69. 69.
    A. V. Silhanek, L. Van Look, R. Jonckheere, B. Y. Zhu, S. Raedts, and V. V. Moshchalkov, Phys. Rev. B 72, 014507 (2005).CrossRefADSGoogle Scholar
  70. 70.
    M. Menghini, R. J. Wijngaarden, A. V. Silhanek, S. Raedts, and V. V. Moshchalkov, Phys. Rev. B 71, 104506 (2005).CrossRefADSGoogle Scholar
  71. 71.
    G. S. Mkrtchyan and V. V. Shmidt, Soviet Physics Jetp-Ussr 34(1), 195 (1972).Google Scholar
  72. 72.
    A. I. Buzdin, Phys. Rev. B 47, 11416 (1993), M. M. Doria and G. F. Zebende, Phys. Rev. B 66, 064519 (2002).CrossRefADSGoogle Scholar
  73. 73.
    J. I. Martin, et al., Phys. Rev. Lett. 79, 1929 (1997).CrossRefADSGoogle Scholar
  74. 74.
    D. J. Morgan and J. B. Ketterson, Phys. Rev. Lett. 80, 3614 (1998).CrossRefADSGoogle Scholar
  75. 75.
    M. J. Van Bael, et al., Phys. Rev B 59, 14674 (1999).CrossRefADSGoogle Scholar
  76. 76.
    M. Lange, M. J. Van Bael, Y. Bruynseraede, and V. V. Moshchalkov, Phys. Rev. Lett. 90, 197006 (2003).CrossRefADSGoogle Scholar
  77. 77.
    J. E. Villegas, et al., Science, 302, 1188 (2003).CrossRefADSGoogle Scholar
  78. 78.
    C. Reichhardt, J. Groth, C. J. Olson, S. B. Field, and F. Nori, Phys. Rev. B 54, 16108 (1996).CrossRefADSGoogle Scholar
  79. 79.
    C. Reichhardt, C. J. Olson, S. B. Field, and F. Nori, Phys. Rev. B 57, 7937 (1998).CrossRefADSGoogle Scholar
  80. 80.
    G. Carneiro, Phys. Rev. B 66, 054523 (2002).CrossRefADSGoogle Scholar
  81. 81.
    E. Rosseel, M. Van Bael, M. Baert, R. Jonckheere, V. V. Moshchalkov, and Y. Bruynseraede, Phys. Rev. B 53, R2983 (1996).CrossRefADSGoogle Scholar
  82. 82.
    M. V. Milosevic, and F. M. Peeters, Europhysics Letters 70(5), 670 (2005).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Victor. V. Moshchalkov
    • 1
  1. 1.INPAC-Institute for Nanoscale Physics and Chemistry, Nanoscale Superconductivity and Magnetism & Pulsed Fields GroupKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations