Advertisement

The Order Parameter Susceptibility and Collective Modes of Superconductors

  • A. M. Goldman
Article

Abstract

The spectrum of order parameter fluctuations of superconductors can be determined through the measurement of the wave-vector and frequency-dependent generalized susceptibility, or pair-field susceptibility. The determination of the pair-field susceptibility is conceptually similar to other susceptibility measurements. In the case of paramagnets at temperatures above a ferromagnetic transition, the susceptibility is determined by the linear response to a magnetic field. Because the superconducting order parameter is off-diagonal in number space, for superconductors there is no classical field analogous to a laboratory magnetic field. However, an effective field can be applied to a fluctuating superconductor across a tunneling barrier through the Josephson coupling of the rigid order parameter of a second superconductor well below its transition temperature. This leads to an observable dc contribution to the tunneling current that is a higher order, “incoherent” Josephson current. The magnitude of this current determines the susceptibility. Its frequency and wave-vector dependence are determined by the dc voltage across the junction and the dc magnetic field applied in the plane of the junction, respectively. In conventional superconductors near, but above their transition temperatures, measurements of the pair-field susceptibility have revealed a diffusive dynamics that can be described by a simple time-dependent Ginzburg–Landau equation. Measurements of the pair-field susceptibility below the transition temperature have revealed the existence of a gapless, propagating order parameter collective mode that becomes quickly overdamped as the temperature is reduced below T c. The physics of these phenomena and the existing experiments will be reviewed. Opportunities for the application of these techniques to contemporary problems of high-temperature superconductors will be presented. Of particular interest are the possibilities for characterizing the nature of the pseudogap regime.

Keywords

Tunneling Junction Collective Mode Landau Equation Superconducting Order Parameter Josephson Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Ferrell, Fluctuations and the superconducting phase transition: II. Onset of Josephson tunneling and paraconductivity of a junction. J. Low Temp. Phys. 1, 423–442 (1969).CrossRefGoogle Scholar
  2. 2.
    D. J. Scalapino, Pair tunneling as a probe of fluctuations in superconductors. Phys. Rev. Lett. 24, 1052–1055 (1970).CrossRefADSGoogle Scholar
  3. 3.
    H. Takayama, Superconducting fluctuation effects on the S–I–N junction current. Prog. Theor. Phys. (Japan) 46, 1–14 (1971).CrossRefADSGoogle Scholar
  4. 4.
    J. T. Anderson and A. M. Goldman, Experimental determination of the pair susceptibility of a superconductor. Phys. Rev. Lett. 25, 743–747 (1970) [Erratum: Phys. Rev. Lett. 26, 534 (1971)].CrossRefADSGoogle Scholar
  5. 5.
    K. Yoshihiro and K. Kajimura, Phys. Lett. 32A, 71–72 (1970).ADSGoogle Scholar
  6. 6.
    A. M. Kadin and A. M. Goldman, Pair-field susceptibility and superconducting tunnelling: a macroscopic approach. Phys. Rev. B 25, 6701–6710 (1982).CrossRefADSGoogle Scholar
  7. 7.
    A. Larkin and A. Varlamov, Theory of Fluctuations in Superconductors (Oxford University Press, Oxford, 2005), p. 227.MATHGoogle Scholar
  8. 8.
    B. Jankó, I. Kosztin, K. Levin, M. R. Norman, and D. J. Scalapino, Incoherent pair tunneling as a probe of the cuprate pseudogap. Phys. Rev. Lett. 82, 4304–4307 (1999).CrossRefADSGoogle Scholar
  9. 9.
    I. Ivan, and J. N. Eckstein, Atomic-layer fabrication of high-Tc tunnel junctions. J. Alloys Comp. 251, 201–205 (1997).CrossRefGoogle Scholar
  10. 10.
    R. V. Carlson and A. M. Goldman, Propagating order-parameter collective modes in superconducting films. Phys. Rev. Lett. 34, 11–15 (1975).CrossRefADSGoogle Scholar
  11. 11.
    A. Schmid and G. Schön, Collective oscillations in a dirty superconductor. Phys. Rev. Lett. 34, 941–943 (1975).CrossRefADSGoogle Scholar
  12. 12.
    S. N. Artemenko and A. F. Volkov, Collective excitations with a sound spectrum in superconductors. Zh. Eskp. Teor. Fiz. 69, 1764–1767 (1975).ADSGoogle Scholar
  13. 13.
    V. P. Gusynin and I. A. Shovkovy, Carlson–Goldman modes in the color superconducting phase of dense QCD. Phys. Rev. D 64, 1160051–1160055 (2001).CrossRefGoogle Scholar
  14. 14.
    N. N. Bolgoliubov, V. V. Tolmachev, and D. N. Shirkov, New Method in the Theory of Superconductivity (Consultants Bureau, New York, 1958).Google Scholar
  15. 15.
    P. W. Anderson, Coherent excited states in the theory of superconductivity: gauge invariance and the Meissner effect. Phys. Rev 110, 827–835 (1958); Random-phase approximation in the theory of superconductivity. Phys. Rev. 112, 1900–1916.CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    P. C. Martin, Collective Modes in Superconductors Superconductivity, R. D. Parks, ed. (Marcel Dekker, New York, 1969), Ch. 7.Google Scholar
  17. 17.
    J. E. Mooij and G. Schön, Propagating plasma mode in thin superconducting filaments. Phys. Rev. Lett. 55, 114–117 (1985).CrossRefADSGoogle Scholar
  18. 18.
    O. Buisson, P. Xavier, and J. Richard, Observation of propagating plama modes in a thin superconducting film. Phys. Rev. Lett. 73, 3153–3156 (1994).CrossRefADSGoogle Scholar
  19. 19.
    K. Kadowaki, I. Kakeya, M. B. Gaifulin, T. Mochikuu, S. Takahashi, T. Koyama, and M. Tachiki, Longitudinal Josephson-plasma excitation in Bi2Sr2CaCu2O88+δ direct observation of the Nambu Goldstone mode in a superconductor. Phys. Rev. B 56, 5617–5621 (1997).CrossRefADSGoogle Scholar
  20. 20.
    A. M. Kadin, Analysis of the proximity-induced Josephson effect in superconductor–normal contacts. Phys. Rev. B 41, 4072–4077 (1990).CrossRefADSGoogle Scholar
  21. 21.
    A. M. Kadin, A phenomenological model for high-frequency dynamics of double-barrier (SINIS) Josephson junctions. Supercond. Sci. Technol. 14, 276–284 (2001).CrossRefADSGoogle Scholar
  22. 22.
    J. T. Anderson, R. V. Carlson, and A. M. Goldman, Pair tunneling as a probe of order-parameter fluctuations in superconductors: Zero magnetic field effects. J. Low Temp Phys. 8, 29–46 (1972).CrossRefGoogle Scholar
  23. 23.
    L. Kramer and R. J. Watts-Tobin, Theory of dissipative current-carrying states in superconducting filaments. Phys. Rev. Lett. 40, 1041–1044 (1978).CrossRefADSGoogle Scholar
  24. 24.
    W. J. Skocpol, Nonequilibrium effects in 1-D superconductors, in Proceedings of the NATO Advanced Study Institute: Nonequilibrium Superconductivity, Phonons and Kapitza Boundaries, K. E. Gray, ed. (Plenum, New York, 1981), Ch. 18.Google Scholar
  25. 25.
    A. M. Kadin, L. N. Smith, and W. J. Skocpol, Charge imbalance waves and nonequilibrium dynamics near a superconducitng phase-slip center. J. Low Temp. Phys. 38, 497–533 (1980).CrossRefGoogle Scholar
  26. 26.
    A. M. Kadin and A. M. Goldman, Dynamical effects in nonequilibrium superconductors: Some experimental perspectives, in Nonequilibrium Superconductivity, D. N. Langenberg and A. I. Larkin, eds. (North-Holland, Amsterdam, 1986), Ch. 7.Google Scholar
  27. 27.
    R. V. Carlson and A. M. Goldman, Superconducting order-parameter fluctuations below Tc. Phys. Rev. Lett. 31, 880–883 (1973).CrossRefADSGoogle Scholar
  28. 28.
    R. V. Carlson and A. M. Goldman, Dynamics of the order parameter of thin superonducting films. J. Low Temp. Phys. 25, 67–97 (1976).CrossRefGoogle Scholar
  29. 29.
    F. Aspen and A. M. Goldman, Spin-flip scattering and the dynamics of the superconducting order parameter. Phys. Rev. Lett. 43, 3207–310 (1979).CrossRefGoogle Scholar
  30. 30.
    F. Aspen and A. M. Goldman, Pair-field susceptibility of proximity-effect sandwiches. Phys. Rev. B 22, 3508–3511 (1980).CrossRefADSGoogle Scholar
  31. 31.
    S. R. Shenoy and P. A. Lee, Probe of superconductor fluctuations by a tunneling junction in a magnetic field. Phys. Rev. B 10, 2744–2755 (1974).CrossRefADSGoogle Scholar
  32. 32.
    E. Simanek and J. C. Hayward, Superconducting fluctuations and tunneling anomalies below Tc. Physica 78, 199–219 (1974).CrossRefADSGoogle Scholar
  33. 33.
    I. O. Kulik, Pair susceptibility and mode propagation in superconductors: A microscopic approach. J. Low Temp. Phys. 43, 591–620 (1981).CrossRefGoogle Scholar
  34. 34.
    M. Dinter, Two-particle correlation functions in superconductors below the transition temperature. J. Low Temp. Phys. 26, 39–63 (1977).CrossRefGoogle Scholar
  35. 35.
    M. Dinter, Superconductor fluctuations in tunneling junctions below the transition temperature. J. Low Temp Phys. 32, 529–553 (1978); Collective excitations in superconductors below Tc. Phys. Rev. B 18, 3163–3173.CrossRefGoogle Scholar
  36. 36.
    G. Schön and V. Ambegaokar, Collective modes and nonequilibrium effects in current-carrying superconductors. Phys. Rev. B 19, 3515–3528 (1979).CrossRefADSGoogle Scholar
  37. 37.
    E. Riedel, The tunnel effect in superconductors in a microwave field. Z. Naturforsch. 19a, 1634–1635 (1964).Google Scholar
  38. 38.
    Yu. N. Ovchinnikov, Longitudinal oscillations in superconducting alloys. Zh. Eksp. Teor. Fiz. 72, 773–82 (1977).ADSGoogle Scholar
  39. 39.
    S. N. Artemenko and A. F. Volkov, Delectric fields and collective oscillations in superconductors. Usp. Fiz. Nauk 128, 3–30 (1979); Collective oscillations in superconductors revisted, 1–4 (1997) (arXiv:cond-mat/9712086).Google Scholar
  40. 40.
    G. Schön, Collective modes in superconductors, in Nonequilibrium Superconductivity, D. N. Langenberg and A. I. Larkin, eds. (North-Holland, Amsterdam, 1986), Ch. 13.Google Scholar
  41. 41.
    C. J. Pethick and H. Smith, Relaxation and collective motion in superconductors; a two-fluid description. Ann. Phys. (New York) 119, 133–169 (1979); Charge imbalance in non-equilibrium superconductors. J. Phys. C 13, 6313–6347 (1980).CrossRefADSGoogle Scholar
  42. 42.
    H.-J. Kwon, A. T. Dorsey, and P. J. Hirschfeld, Observability of quantum phase fluctuations in cuprate superconductors. Phys. Rev. Lett. 86, 3875–3878 (2001).CrossRefADSGoogle Scholar
  43. 43.
    H.-J. Kwon, Quantum vortex fluctuations in cuprate superconductors. Phys. Rev. B 63, 134511–134515 (2001).CrossRefADSGoogle Scholar
  44. 44.
    P. B. Littlewoood and C. M. Varma, Amplitude collective modes in superconductors and their coupling to charge–density waves. Phys. Rev. B 26, 4883–4893 (1982).CrossRefADSGoogle Scholar
  45. 45.
    K. Y. M. Wong and S. Takada, Effects of quasiparticle screening on collective modes: incommensurate charge–density–wave systems. Phys. Rev. B 36, 5476–5492 (1987).CrossRefADSGoogle Scholar
  46. 46.
    K. Y. M. Wong and S. Takada, Effects of quasiparticle screening on collective modes: II. Superconductors. Phys. Rev. B 37, 5644–5656 (1988).CrossRefADSGoogle Scholar
  47. 47.
    Y. Ohashi and S. Takada, Theoretical studies on the observation of the low-frequency plasma oscillation and its coupling with the Carlson–Goldman mode in dirty quasi-two-dimensional superconductors. Phys. Rev. B 59, 4404–4411 (1999).CrossRefADSGoogle Scholar
  48. 48.
    Y. Ohashi and S. Takada, Collective phase oscillation in two-dimensional d-wave superconductors. Phys. Rev. B 62, 5971–5983 (2000).CrossRefADSGoogle Scholar
  49. 49.
    S. G. Sharapov and H. Beck, Effective action approach and Carlson–Goldman mode in d-wave superconductors. Phys. Rev. B 65, 134516–134517 (2002).CrossRefADSGoogle Scholar
  50. 50.
    A. Sudbø, Pair susceptibilities and gap equations in non-Fermi liquids. Phys. Rev. Lett. 74, 2575–2578 (1995).CrossRefADSGoogle Scholar
  51. 51.
    Y. B. Kim and X.-G. Wen, Effects of collective modes on pair tunneling into superconductors. Phys. Rev. B 48, 6319–6329 (1993).CrossRefADSGoogle Scholar
  52. 52.
    S. H. Pan, et al., Microscopic electronic inhomogeneity in the high-Tc superconductor Bi2Sr2CaCu2O88+x Nature 413, 282–285 (2001).CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • A. M. Goldman
    • 1
  1. 1.School of Physics and AstronomyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations